摘要:航空工业面临着降低运营和维护成本的诸多挑战。降低这些成本的可能方法之一是引入无线传感器网络 (WSN)。WSN 已经在安全关键和非安全关键分布式系统中找到了各种应用。本文讨论了 WSN 在飞机结构健康监测中的应用。使用市场上可用的组件特别关注 WSN 的设计问题。关键词:无线传感器网络、飞机结构健康监测、微机电系统、基于状态的维护、传感器节点 介绍 飞机的重量直接影响运营成本。目前,飞机重量减轻一磅意味着每架飞机每年可节省 100 美元。航空工业在减重方面进行了许多创新。多年来,复合材料、混合材料和先进铝合金在机身中的占比大幅增加,实现了显著的重量优势。然而,由于保守的设计理念仍然盛行,复合材料、混合材料和先进铝合金的全部潜力(如材料允许量的大幅减少)尚未实现。必须提高对这些先进材料的疲劳、裂纹/分层识别/增长和损伤容限特性的评估信心。这将有助于减少当前飞机结构设计中的保守性,从而实现细长的飞机机身结构。在过去十年中,无线传感器网络 (WSN) 已成功应用于许多工程领域,例如:结构健康监测 (SHM)、工业应用、环境监测、交通管制、健康应用等。本文讨论了 WSN 在飞机结构健康监测中的应用。
本书付印时,美国国家航空航天局 (NASA) 已成立超过半个世纪,它的长寿归功于历届总统政府及其所服务的美国人民对其科学和技术专长的重视。在这半个世纪里,飞行从超音速发展到轨道速度,喷气式客机成为洲际交通的主要方式,宇航员登陆月球,由该机构开发的机器人航天器探索了太阳系的遥远角落,甚至进入了星际空间。NASA 诞生于一场危机——苏联人造卫星在太空领域取得胜利后的混乱局面——迎接新兴太空时代的挑战,取得了辉煌的崛起。美国宇航局成立后不到十年,宇航员团队就开始筹划首次登月,1969 年 7 月 20 日,尼尔·阿姆斯特朗迈出了“一小步”,成功登月。很少有事件能像阿姆斯特朗小心翼翼地从细长的鹰号登月舱中走下来,在静海基地尘土飞扬的平原上留下历史性的靴印,如此令人感动,如此引人注目或具有重大意义。阿波罗计划之后,美国宇航局开始了一系列太空计划,这些计划如果说没有阿波罗计划那样令人感动和引人注目,那么它们的成就和勇气也是非同凡响。航天飞机、国际空间站、哈勃太空望远镜以及各种行星探测器、着陆器、探测车和飞越任务都证明了美国宇航局的创造力、技术人员的优秀以及对空间科学和探索的奉献精神。但 NASA 还有另一面,在如今这个被普遍称为美国太空机构、其最受瞩目的员工都是勇敢地执行任务的宇航员的时代,这一面往往被隐藏起来。
粘液是一种动态生物水凝胶,主要由糖蛋白粘蛋白组成,具有独特的生物物理特性,并形成保护细胞免受多种病毒侵害的屏障。在这里,这项工作开发了一种基于聚甘油硫酸盐的树枝状粘蛋白启发共聚物 (MICP-1),其中约 10% 的活性二硫化物重复单元作为交联位点。MICP-1 的低温电子显微镜 (Cryo-EM) 分析揭示了细长的单链纤维形态。MICP-1 对许多病毒表现出潜在的抑制活性,例如单纯疱疹病毒 1 (HSV-1) 和 SARS-CoV-2(包括 Delta 和 Omicron 等变体)。MICP-1 使用线性和支链聚乙二醇硫醇 (PEG-thiol) 作为交联剂,生产出具有与健康人痰液相似的粘弹性能和可调节微结构的水凝胶。使用单粒子跟踪微流变学、电子顺磁共振 (EPR) 和低温扫描电子显微镜 (Cryo-SEM) 来表征网络结构。合成的水凝胶表现出自修复特性,以及可通过还原调节的粘弹性能。使用 transwell 测定法来研究水凝胶对 HSV-1 病毒感染的保护特性。活细胞显微镜证实,由于网络形态和阴离子多价效应,这些水凝胶可以通过捕获病毒来保护底层细胞免受感染。总体而言,这种新型粘蛋白共聚物可生成数克级的粘液模拟水凝胶。这些水凝胶可用作富含二硫化物的气道粘液研究的模型,也可用作生物材料。
我们介绍了德克萨斯大学 - 城市研究的全球建筑高度(UT -Globus),该数据集可为全球1200多个城市或地区提供建筑高度和城市顶篷参数(UCP)。ut-Globus将开源太空载速度(ICETAT-2和GEDI)和粗分辨率的城市冠层高度数据与机器学习模型结合在一起,以估算建筑物级别的信息。使用来自美国六个城市的LiDAR数据进行验证,显示ut-Globus衍生的建筑高度的均方根误差(RMSE)为9.1米。验证1公里2个网格电池内的平均建筑高度,包括来自汉堡和悉尼的数据,导致RMSE为7.8米。与现有的基于餐桌的本地气候区域方法相比,在城市天气研究和预测(WRF城市)模型中,在城市内空气温度代表性中的UCP显着改善(RMSE为55%)。此外,我们演示了数据集使用WRF城市模拟降温策略并建立能源消耗的数据集,并在芝加哥,伊利诺伊州和德克萨斯州的奥斯汀进行了测试案例。使用太阳能和长波环境辐照度几何形状(SOLWEIG)模型(结合UT-Globus和LiDAR来源的建筑高度)的街道尺度平均辐射温度模拟证实了该数据集在MD Baltimore,MD(白天RMSE = 2.85°C)中建模数据集的有效性。因此,UT-Globus可用于建模具有重大社会经济和生物气象风险的城市危害,从而实现更细长的城市气候模拟,并由于缺乏建筑信息而克服了先前的限制。
1. 塞尔维亚贝尔格莱德军事技术学院 摘要:航空工业面临着降低运营和维护成本的诸多挑战。降低这些成本的可能方法之一是引入无线传感器网络 (WSN)。WSN 已经在安全关键和非安全关键分布式系统中找到了多种应用。本文讨论了 WSN 在飞机结构健康监测中的应用。特别关注了使用市场上现有组件的 WSN 设计问题。 关键词:无线传感器网络、飞机结构健康监测、微机电系统、基于状态的维护、传感器节点 介绍 飞机的重量直接影响运营成本。目前,飞机重量减轻一磅意味着每架飞机每年可节省 100 美元。航空工业在减轻重量方面进行了许多创新。多年来,机身中复合材料、混合材料和先进铝合金的比例大幅增加,实现了显著的重量效益。然而,由于保守的设计理念仍然盛行,复合材料、混合材料和先进铝合金的全部潜力尚未实现,因为材料允许量大幅减少。必须提高对这些先进材料的疲劳、裂纹/分层识别/增长和损伤容限特性的评估信心。这将有助于减少当前飞机结构设计中的保守性,从而实现细长的飞机机身结构。在过去十年中,无线传感器网络 (WSN) 已成功应用于许多工程领域,例如:结构健康监测 (SHM)、工业应用、环境监测、交通控制、健康应用等。本文讨论了 WSN 在飞机结构健康监测中的应用。
人生历史Dicentra Eximia(狂野的出血心)是富马西亚科中一种有吸引力的多年生草药。Brooks(1911)将D. Eximia植物描述为精致而美丽,Rydberg(1929)指出,这是他见过的最美丽的本地花之一。dicentra eximia具有粗壮的鳞状根茎,并在长叶柄上细分(蕨类植物)的基部叶片分裂(蕨类植物),这些叶柄在底部略微膨胀。叶子可能长4 dm,但扩散的生长习惯可以使植物显得宽或宽(Cahalan 2008,Longfellows 2024)。Dicentra Eximia的开花茎是无叶的,通常比叶子更长,终止于由短分支上的几个小花簇组成的花序。花萼是一对保护发育中的花蕾的小萼片,在盛开的时间被丢弃。花冠是双侧对称的,包括两对花瓣。大的外部花瓣长约2厘米,它们固定在一起,形成一个细长的心形形状,以4-8毫米长的一对喇叭形裂片结尾,而内部花瓣大多是隐藏的,除了它们的波峰超出了外部花瓣的叶子之外。所产生的结构与吊坠液滴产生心脏的印象。因此,通用名称(Cahalan 2008,Gracie 2012)。D. exiamia花颜色可能从深玫瑰紫色到粉红色,或者偶尔白色。果实长到卵形胶囊长18-22毫米。(请参阅Britton and Brown 1913,Rydberg 1929,Fernald 1950,Stern 1961&2020,Gleason and Cronquist 1991,Tebbitt等人,Tebbitt等人。2008)。2008)。
图 1 中央复合体 (CX) 和相关神经纤维网的解剖结构。(a) CX、外侧复合体 (LX) 的内侧球 (MBU) 和外侧球 (LBU) 的 3D 重建正面图。(b) (a) 中显示的 3D 重建的侧视图。CX 由中央体 (CBU) 的上部、中央体 (CBL) 的下部、原脑桥 (PB) 和成对结节 (NO) 组成。(c) (a) 中显示的 3D 重建的示意横截面,其中显示了前唇 (ALI)。后沟 (pg) 延伸在中央体和 NO 之间。后视交叉 (PCH) 位于中央体和 PB 之间。腹沟纤维复合体 (vgfc) 位于 CBL 和 ALI 之间。(d – h) 通过 CX 的光学切片,用突触蛋白染色。 (d) CBL 被分为九个垂直切片(切片边界用虚线表示一个半球)。(e)每个结节由一个上部单位(NOU)和一个下部单位(NOL)组成。(f)胆囊(GA)是 LX 内的一个小的细长的神经纤维网,位于峡部 2(IT2;边界用黑色虚线表示)。(g)CX 前方光学切片中上部神经纤维网的外观(边界用虚线表示)。(h)前唇(ALI)位于中央体前方。a,前部;l,外侧;LCA,蘑菇体侧萼;MB,蘑菇体;MCA,蘑菇体内萼;m,内侧;p,后部;SIP,上中间原大脑;SLP,上外侧原大脑;SMP,上内侧原大脑。比例尺 = 50 μ m (a – d,f,h), 20 μ m (e), 100 μ m (g) [彩色图可在 wileyonlinelibrary.com 上查看]
摘要 通过在具核梭杆菌中创建框内缺失突变来使基因失活非常耗时,并且大多数具核梭杆菌菌株在遗传上是难以处理的。为了解决这些问题,我们引入了一种基于核糖开关的可诱导 CRISPR 干扰 (CRISPRi) 系统。该系统采用核酸酶失活的化脓性链球菌 Cas9 蛋白 (dCas9),通过持续表达的单向导 RNA (sgRNA) 特异性地引导至目的基因。从机制上讲,这种 dCas9-sgRNA 复合物成为 RNA 聚合酶难以逾越的障碍,从而抑制了目标基因的转录。利用这个系统,我们首先研究了两个非必需基因 ftsX 和 radD,它们对于具核梭杆菌的胞质分裂和共聚集至关重要。添加诱导剂茶碱后,ftsX 抑制导致类似于染色体 ftsX 缺失的丝状细胞形成,而靶向 radD 则显著降低 RadD 蛋白水平,消除 RadD 介导的共聚集。随后将该系统扩展到探测必需基因 bamA 和 ftsZ,这两个基因对于外膜生物合成和细胞分裂至关重要。令人印象深刻的是,bamA 抑制破坏了膜完整性和细菌分离,阻碍了生长,而 ftsZ 靶向会在肉汤中产生细长的细胞,并且琼脂生长受到损害。对 F. nucleatum 临床菌株 CTI-2 和 Fusobacterium periodonticum 的进一步研究表明,靶向 tnaA 时吲哚合成减少。此外,沉默 F. periodonticum 中的 clpB 会降低 ClpB,从而增加热敏感性。总之,我们的 CRISPRi 系统简化了各种梭杆菌菌株的基因失活。
闭环地热系统为资源受限的水热系统和刺激密集型地热系统提供了替代方案。在这项工作中,我们采用细长的体型理论(SBT)模型来模拟丹佛 - 朱尔斯堡盆地Wattenberg地区U环井设计的井流量和传热性能。研究了三种U环井模式,包括单,双重和多边设计。感兴趣区域内的地下的特征是深,热(> 200°C)的火成岩/变质地下室岩石,其背后是多个沉积地层。在6 km的目标深度内,U环的侧截面(S)估计接近300°C。作为基本情况,通过用u-loops中的SBT模型模拟带有开孔的侧面的SBT模型,研究了仅传导热传递,这些模型将使用水作为工作流体直接与热的干燥岩石直接交换。还考虑了超临界CO 2作为传热液的利用。在每种情况下,都评估了20年期限内的每年热量产生和温度曲线的系统性能。此外,使用自上而下的技术经济分析模型确定热量和电的升级成本(LCOH和LCOE)。结果表明,性能和成本优化的U-Loop设计是一种注射井的井间距为1,000米,具有10个50米间距的侧面,其温度梯度为60°C/km。通过此回路以60 kg/s的速度注入20°C的水,可以实现19兆瓦Th的平均热量产量(即2.2兆瓦E净植物产量),从而使LCOE和LCOH分别为$ 136/MWH E和$ 1.53/gj,在20年的项目中。
远程机器人技术旨在将人类的操作技能和灵巧性在任意距离和任意规模上转移到远程工作场所。透明的远程机器人系统可以实现自然而直观的交互。我们假设机器人系统的具身化(包括三个子组件:所有权、代理和自我定位)可实现最佳的感知透明度并提高任务性能。但是,这尚未得到直接研究。我们根据四个前提进行推理,并从文献中提出支持每个前提的发现:(1)大脑可以具身化非身体物体(例如,机器人手),(2)具身化可以通过介导的感觉运动交互来引发,(3)具身化对机器人系统和操作员身体之间的不一致具有鲁棒性,以及(4)具身化与灵巧的任务性能呈正相关。我们使用预测编码理论作为框架来解释和讨论文献中报告的结果。先前的大量研究表明,通过介导的感觉运动交互,可以在各种虚拟和真实的体外物体(包括假肢、化身和机器人)上诱导化身。此外,非人类形态也可以实现化身,包括细长的手臂和尾巴。根据预测编码理论,没有任何一种感觉方式对于建立所有权至关重要,多感官信号的差异不一定会导致化身的丧失。然而,多感官同步或视觉相似性方面的巨大差异可能会阻碍化身的发生。文献对化身和(灵巧的)任务表现之间的联系提供了较少的广泛支持。然而,用假手收集的数据确实表明了正相关性。我们得出结论,所有四个前提都得到了文献中的直接或间接证据的支持,这表明远程操纵器的化身可能会提高遥控机器人的灵巧表现。这值得进一步对遥控机器人中的化身进行实施测试。我们制定了第一套在远程机器人技术中应用具体化的指导方针,并确定了一些重要的研究课题。