poly(pekk)是热塑性(Paek)(Paek)(Paek)聚合物家族的一部分,具有出色的机械性能和耐化学性能,使其成为高强度复合材料的基质的有趣候选者。在高性能应用中,对材料特性进行彻底的了解至关重要,在热塑性塑料的情况下,结晶度起着至关重要的作用。本评论论文涵盖了PEKK和CF/PEKK复合材料的结晶形态和结构,在等热和动态条件下的结晶行为和动力学,以及它们在不同等级的PEKK中如何在不同等级的pekk中变化,而邻苯甲酸/同粒性含量率不同。在CF/PEKK复合材料的情况下,讨论了纤维 - 矩阵界面上的晶体结构发育的影响,以及碳纤维夹杂物对结晶动力学的影响。提供和讨论了文献中可用的几种结晶动力学和经晶模型。还考虑了CF/PEKK复合材料的当前局限性和未来方向,涵盖了制造技术,例如高压灭绝,自动胶带放置和3D打印。本文在相关时进行了比较,与经过文献稀疏的文献相关的pekk和CF/Pekk的讨论时,都会与经过对PEKK和CF/PEKK的讨论进行比较。
单晶研究有助于更好地了解有机光伏器件的基本特性。因此,在这项工作中,厚度为 250 nm 至 1000 nm 的红荧烯单晶被用于生产倒置双层有机太阳能电池。接下来,研究了与单晶厚度相同的多晶红荧烯(正交、三斜)和非晶双层太阳能电池,以进行跨平台比较。为了研究单晶、多晶(三斜-正交)和非晶形式如何改变红荧烯/PCBM 界面处的载流子复合机制,进行了光强度测量。具有不同形式的红荧烯的有机太阳能电池中 JSC、VOC 和 FF 参数的光强度依赖性。除了双分子复合外,在采用非晶态和多晶态红荧烯的器件中还观察到单分子(Shockley Read Hall)复合,而由于供体受体界面的陷阱状态减少,单晶器件受陷阱辅助 SRH 复合的影响较小。迄今为止,这项提议的研究是唯一一项系统研究由不同结构形式的红荧烯制成的有机太阳能电池中的传输和界面复合机制的研究。
摘要:随着药物晶体表面积的增加可改善溶解动力学和有效的溶解度,纳米化药物晶体已成为一种成功的口服生物利用度的方法。最近,通过利用聚合物和表面活性剂赋形剂在结晶过程中,开发了自下而上的方法来直接组装纳米晶体,以控制晶体尺寸,形态和结构。然而,尽管重大研究研究了聚合物和其他单一添加剂如何抑制或促进药物系统中的结晶,但很少有工作研究多种赋形剂在药物晶体结构和结晶度的程度上的机械相互作用,从而影响配方性能。这项研究探讨了模型疏水药物晶体的结构和结晶度如何由于竞争性非离子表面活性剂(Polysorbate 80和sorbitan monooleate)和表面活性聚合物(甲基纤维素)之间的竞争性界面化学吸附而变化。经典分子动力学模拟突出了关键分子间相互作用,包括表面活性剂 - 聚合物络合和晶体表面表面活性剂筛选,修改所得的晶体结构。并行,在水凝胶薄膜中产生药物纳米晶体的实验证明了药物结晶度随着表面活性剂的重量分数的增加而增加。仿真结果揭示了整体晶体中的加速动力学与实验测量的结晶度之间的联系。关键字:纳米制剂,分子动力学,界面,聚合物,表面活性剂,结晶度据我们所知,这些是第一个模拟,该模拟直接表征了赋形剂表面组成的结果,并将结晶度的实验范围与分子晶体的结构变化联系起来。我们的方法提供了对纳米结晶中结晶度的机械理解,可以扩大口服可兑换的小分子疗法的范围。
由于其储量丰富、生产成本低以及理论容量合理(372 mA hg 1),它被认为是最先进的 LIBs 负极材料。1,2然而,它存在严重的结构崩塌、循环过程中的剥落、与低工作电压相关的锂枝晶生长以及低温应用的限制。1,3 – 8由于 LIB 技术的快速发展,寻找新型负极材料迫在眉睫。在各种类型的负极材料中,氧化物基插层型负极因其高体积能量密度、增强的安全性和不错的功率密度而备受关注。 2,9 – 14 特别是钛基氧化物材料,例如 TiO 2 ,由于其成本低、毒性低、理论容量好、安全操作电位(1.7 V vs. Li/ Li + )、锂嵌入过程中体积变化小(< 4%)和往返效率高,对锂离子电池很有吸引力。2,12,15 – 18 氧化物电极材料的电化学性质在很大程度上受原子排列的影响。已研究了用于 LIBs 的各种同质异形体的 TiO 2,包括锐钛矿 ( I 4 1 / amd )、19 – 21 金红石 ( P 4 2 / mnm )、19,22,23 TiO 2 -B ( C 2 / m )、24,25 板钛矿 ( Pbca )、26 斜方锰矿 ( Pbmn ) 27 和钙钛矿 ( I 4 / m )。28 在所有同质异形体中,锐钛矿 TiO 2 的研究最为广泛。2,11,29 此外
追求高水平的掺杂而不会恶化结晶度是非常困难的,但对于释放材料的隐藏力至关重要。这项研究证明了通过激光至关重要的自由基,硼龙二氢化合物(BH 2)的激光振动激发(BH 2)在燃烧化学蒸气期间保持晶格完整性的有效途径。改进的钻石结晶度归因于硼氢化硼(BH)的相对丰度的激光,热抑制的热抑制,其过度存在会诱导硼隔离并扰乱结晶。BDD的硼浓度为4.3×10 21 cm -3,膜电阻率为28.1毫米·CM,孔迁移率为55.6 cm 2 v -1 s -1,超过了商业BDD。高导电和结晶的BDD在传感葡萄糖方面具有提高的效率,证实了激光激发在产生高性能BDD传感器方面的优势。在掺杂过程中重新获得激光激发的结晶度可以消除半导体行业的长期瓶颈。
摘要:用于固态钠(NA)电池的复合固体聚合物电解质(CSP),由于其高模量,良好的机械性能和相对于液体电解质的总体安全性而具有吸引力。重要的CSPE特性(例如结晶度和离子电导率)与填充材料的物理化学特征紧密相关。在这项工作中,我们研究了2D六角硼(2D H-BN)含量如何在聚(氧化乙烷)(PEO)基于Na-ion的CSPE中使用NANO 3作为模型盐进行Na-ion传导的聚(PEO)CSPES中的流动聚合物结晶度和离子电导率。使用X射线差异(XRD),差异扫描量热法(DSC)和电化学阻抗光谱镜(EIS),我们发现聚合物结晶度在H-BN浮动的存在中会增加,而总离子电导率相对降低了相对降低的样品。量子机械DFT计算揭示了H-BN与两个离子盐的两个离子结合的能力,更强烈地与Na +阳离子结合,迄今为止,在基于Na的聚合物电解质的情况下尚未报道。这项工作中的实验和计算效果的组合提供了关键的物理见解,以了解填充剂的几何特征和化学特征(即刘易斯酸度和刘易斯碱度)在CSP的设计中用于Na-ion传导。
石墨材料是重要的工业产品。电池和电子计算机行业的快速开发激励了对石墨材料的巨大需求。然而,如今,石墨材料是通过在高于2500℃的温度下通过热处理化石油或煤炭衍生的焦炭来商业生产的。基于化石的原料和能源密集型生产过程均与可持续发展的概念背道而驰。本论文提出了可持续的低温催化石墨化过程,通过使用商业生物质热解生物炭作为原料,生产具有高度有序结晶度的石墨材料。硝酸铁作为石墨化催化剂。研究了石墨温度和铁载量对生产碳产物的性质的影响。产生的石墨材料。结果表明,随着石墨化温度和铁载量的增加,产物的平均石墨晶体大小和产品的石墨化程度增加。但是,铁载量的增加降低了酸洗涤过程的催化剂去除效率。当石墨温度高于1100℃,铁负荷量高于11.2 wt。%时,生产的石墨材料的结晶度优于商业石墨的结晶度。具有最佳结晶度的石墨材料,该材料在1300℃的温度下产生,铁负荷为33.6 wt。%,其结晶度非常接近纯石墨。
背景:由于其压电性能,聚乙烯二烯氟化物(PVDF)在电子设备中广泛使用,可以通过掺入钛酸钡(BT)来增强其。然而,各种制造方法对PVDF/BT纳米复合材料的结晶度和β相含量的影响尚未得到充分忽视。特定背景:不同的制造技术,包括3D打印,静电纺丝,溶剂铸造和压缩成型,影响PVDF/BT复合材料的结构和功能特性。PVDF的结晶度和β-相对于优化这些材料的介电和压电性能至关重要。知识差距:缺乏全面的研究,比较了这些制造技术对PVDF/BT复合材料的结晶度和β相增强的影响,尤其是与它们的介电,压电和机械性能有关。的目的:本研究旨在使用各种制造方法对结晶度和β相形成进行将BT整合到PVDF中的影响。目标是确定这些修饰如何影响材料的结构特征,从而影响其电子特性。结果:X射线衍射(XRD)和傅立叶转换红外光谱(FTIR)分析表明,与溶剂铸造和压缩成型相比,3D打印和电纺丝方法显着增强了PVDF/BT复合材料的β相含量和结晶度。扫描电子显微镜(SEM)证实了使用这些技术改善了PVDF矩阵中的形态特征。新颖性:这项研究提供了有关不同制造方法如何优化PVDF/BT纳米复合材料的结晶度和β期的新见解,这对于增强压电性能至关重要。的含义:研究结果表明,3D打印和静电纺丝优于制造具有增强压电特性的PVDF/BT复合材料的传统方法。这些结果可以通过选择适当的制造技术来实现所需的材料特性来指导更有效的电子设备的开发。
摘要:聚对苯二甲酸乙二醇酯 (PET) 的酶解聚已成为一种潜在的 PET 回收方法,但通常会进行大量的热机械预处理以降低 PET 的结晶度和粒度,这种方法成本高昂且耗能。在当前的研究中,我们使用具有三种不同粒度分布的高结晶度 PET (HC-PET) 和低结晶度冷冻研磨 PET (CM-PET) 来研究 PET 粒度和结晶度对叶堆肥角质酶变体 (LCC-ICCG) 性能的影响。我们发现 LCC-ICCG 水解 PET,导致对苯二甲酸的积累,有趣的是,还会释放出大量的单(2-羟乙基)对苯二甲酸酯。PET 粒度减小会增加 HC-PET 的最大反应速率,而 CM-PET 的最大水解速率在不同粒度下没有显著差异。然而,对于这两种基质,我们表明颗粒尺寸减小对整体转化程度影响不大。具体来说,CM-PET 薄膜在 48 小时内转化为 99 ± 0.2% 的质量损失,而 HC-PET 粉末在 144 小时内仅达到 23.5 ± 0.0% 的转化率。总体而言,这些结果表明,PET 的非晶化是使用 LCC-ICCG 酶进行酶促 PET 回收的必要预处理步骤,但颗粒尺寸减小可能不是必需的。关键词:塑料回收、角质酶、界面生物催化、动力学、结晶度、粒度■简介
聚(乙烯基氟化物),PVDF。PVDF显示了五个称为α,β,γ,δ和ε相的结晶多晶型物。其中,β相具有压电特性,但α相在热力学上更稳定。将添加剂掺入PVDF可以促进β相形成。在这项研究中,通过热压缩成型制造了具有不同SIC含量的PVDF-NANO SIC复合材料,并研究了SIC对PVDF的晶体结构,结晶度和压电性能的影响。通过SEM研究了复合样品的微观结构。制备的样品完全致密,密度超过理论密度的97%。通过FTIR分析确定β相的量,并根据DSC分析得出PVDF的结晶度。最后,通过压电酯测量样品的压电特性。结果表明,通过将SIC含量提高到1 wt%,样品的β相,结晶度和灵敏度的量增加,然后降低。