8 英国于 2014 年颁布了针对 TDM 的有限例外,参见 1988 年《版权、外观设计和专利法》第 29A 条,但已宣布进一步推进的计划,参见 UKIPO,《新闻稿:人工智能和知识产权 - 版权和专利》(2022 年 6 月 28 日)(https://www.gov.uk/government/news/artificial-intelligence-and-ip-copyright-and-patents)。日本《版权法》第 30(4) 条允许非表达性使用受版权保护的作品,只要这种使用不会“根据作品的性质或目的或其使用情况,不合理地损害版权所有者的利益……”。参见日本《版权法》(1970 年 5 月 6 日第 48 号法案,经修订至 2022 年 1 月 1 日),第 30(4) 条,可查阅(https://wipolex.wipo.int/en/legislation/details/21342)。2019 年 4 月,欧盟通过了《数字单一市场指令》(“DSM 指令”),其中针对文本和数据挖掘提出了两项强制性例外。DSM 指令第 3 条要求所有欧盟成员国对非营利研究领域的 TDM 实施广泛的版权例外。DSM 指令第 4 条包含第二项强制性豁免,该豁免范围更具包容性,但较窄。请参阅,2019/790 号指令,OJ 2019 (L 130/92)。另请参阅 Pamela Samuelson,《版权作品的文本和数据挖掘:合法吗?》64:11 C OMMUNICATIONS OF THE ACM 20 (2021)。
电池储能系统教区委员会及其议员在过去六个月中曾有过,并且自2024年7月初向马尔文山(Malvern Hills Plansing)提交了最初的筛查申请,因此完全致力于研究和考虑所有关于在奈特顿(Teme)Hucklebatch农场的电池储能系统提案的论点。从筛选申请公开并促成了社区和附近物业的筛查申请,人们对预期的恐慌和不确定性存在恐慌和不确定性。最初的信念是,奈特顿(Knighton)在特姆(Teme)上会有一个庞大的太阳能电池板农场,占地200英亩,有些人陈述的形象会破坏他们的景观和社区内的乡村景观。很快就确定了太阳能农场不是提案,而是其他东西,社区中大多数人以前从未听说过的东西,电池能量存储系统或贝丝。Integrum Energy遵循了政府有关此类BES提案的规划申请的建议,并发出了有关其建议的信息的咨询通知。这次咨询提供了有关他们的计划,安装类型,位置和大约开发规模的洞察力。从此开始,每个人都对实际提案有更清晰的想法,这当然不是一百英亩的太阳能农场,而是一个储能设施,在少于4英亩的化合物中。这暂时缓解了一小部分社区成员的紧张局势,他们立即保留了任何巨大的发展。当一些公众对贝斯的性质进行更深入的研究,更具体地说是他们列出的可能风险时,这是短暂的。bess确实提出了一定的风险,每个人都应对其使用有初步的保留,尤其是靠近的房屋。忽略这些风险是错误的,但同样,必须仔细评估它们,以真正反映任何灾难性事件的实际风险和概率。一切都有一个风险因素,无论是贝斯,在家庭棚中充电还是在农村地区装满稻草的谷仓。即使是穿越道路的人,风险要素也无法忽视,这是一个平衡问题,以及风险的可能性是否超过了优势。
自动化工厂、核电站、电信中心和空间站等设施的计算机控制操作环境正变得越来越复杂。随着这种复杂性的增长,使用集中管理和调度策略来控制此类环境将变得越来越困难,这些策略既能应对意外事件,又能灵活应对可能随时间发生的操作和环境变化。解决这个问题的一个越来越有吸引力的方法是将此类操作的控制权分配给许多智能的、完成任务的计算代理。现实世界领域可能由多个代理填充。在这样的领域中,代理通常会执行许多复杂的任务,需要在一定程度上关注环境变化、时间约束、计算资源界限以及代理的短期行动可能对其长期目标产生的影响。在现实世界中运作意味着必须在时间和空间的多个粒度级别上处理意外事件。虽然代理必须保持反应能力才能生存,但如果代理要与其他代理协调其行动并以有效的方式处理复杂任务,则需要一定程度的战略和预测决策。本论文提出了一种新的集成代理架构,旨在为理性、自主、移动的代理提供在动态、实时、多代理领域中执行复杂、资源受限任务通常所需的各种行为。在调查了一系列现有架构并充分考虑了在特定领域中产生有效、稳健和灵活行为的要求后,通过集成许多审议和非审议控制功能,设计了最终的软件控制架构——TouringMachine 代理架构。这些功能以分层方式排列,组合起来赋予代理丰富的反应、目标导向、反思和预测能力。认识到代理的内部配置、任务环境和随后的行为库之间存在的复杂关系,代理架构已与功能丰富的仪器化模拟测试平台结合实施。该测试平台允许创建多种单智能体和多智能体导航任务场景,已用于评估架构的实用性并确定其一些主要优点和缺点。
在向低温下 100% 可再生区域能源系统迈进时,区域能源的能量可能会降至低于泵送能量要求,从而消除了使用低能量可再生能源的好处。因为第一定律可能无法揭示这种可能性,所以开发了一个基于能量的区域能源系统整体模型。确定了四个层级,即可再生能源、能源转换和储存、主要区域网络和低能量区域。每个层级都与最佳工厂到区域距离挂钩,以实现最大的基于能量的性能,同时将二氧化碳排放责任降至最低。该模型进一步优化了热泵与 HVAC 设备过度调整的温度峰值,并确定了可再生能源的最佳组合。考虑了向区域输送和分配能量的三种替代方案,即:仅电力、电力和热能(有或没有温度峰值或设备过度调整)以及电力、热能和冷能。比较表明,选择主要取决于区域大小、区域与工厂之间的距离、气候条件、当地可再生能源的可用性、最佳供应温度以及建筑物的热条件。另一种算法根据设备尺寸过大和温度峰值来优化隔热厚度。关键词:能量、低能量区域能源系统、低能量建筑、
Laboratoire de Physicochimie des polyme et des Intfaces,Cy Cergy Paris Univers E,5 Mail Gay Lussac,95000,95000,Neuville-Sur-Oise,法国B Changsha半导体技术与应用创新创新创新研究所,国际科学与技术创新基金会的高级范围,纽约学院,学院,学院,学院,学院,学院,学院,匈牙利大学,校园学院( Changsha,410082,中国C能源转换和存储系,丹麦技术大学,2800,公里。Lyngby,丹麦d低维材料研究中心,马来亚大学物理系,吉隆坡,50603,马来西亚E化学与生物化学系,亚利桑那州亚利桑那大学,图森大学,亚利桑那州,亚利桑那大学,亚利桑那州,85721-0088
f纳克技术大学,丹麦技术大学物理系,丹麦2820 G材料学院,太阳YAT-SEN大学,广州510275,H中国H中心微型/纳米电子中心(Novitas),电气和电子工程学院,电气和电子工程学院,Nanyang技术大学CNRS/NTU/THALES,UMI 3288,研究技术广场,637553,新加坡†相同的贡献 *相应的作者。Karen Chan:kchan@fysik.dtu.dk; pingqi gao:gaopq3@mail.sysu.edu.cn; Hong Li:ehongli@ntu.edu.sgKaren Chan:kchan@fysik.dtu.dk; pingqi gao:gaopq3@mail.sysu.edu.cn; Hong Li:ehongli@ntu.edu.sg
1. 认识允许应力(SLS 和 ULS)的原理及其重要性 2. 讨论混凝土和全预应力和部分预应力结构的抗弯强度概念 3. 评估构件在传递过程中和使用寿命期间预应力的损失 4. 区分弹性分析、弹塑性分析和塑性分析 5. 解释、定位和计算 ULS 处的塑性矩重新分配水平 6. 认识钢筋混凝土和预应力混凝土之间的区别,并在任何特定情况下选择合适的混凝土 7. 描述钢-混凝土组合梁的组成部分及其破坏模式 8. 区分组合梁中全剪力连接和部分剪力连接的不同行为
图 3 掺杂调控 vdW 异质结理论研究典型成果( a )结构优化后的 C 、 N 空位及 B 、 C 、 P 、 S 原子掺杂 g-C 3 N 4 /WSe 2 异质结 的俯视图 [56] ;( b )图( a )中六种结构的能带结构图 [56] ;( c )掺杂的异质结模型图、本征 graphene/MoS 2 异质结的能带结 构及 F 掺杂 graphene/ MoS 2 异质结的能带结构 [57] ;( d ) Nb 掺杂 MoS 2 原子结构的俯视图和侧视图以及 MoS 2 和 Nb 掺杂
电致变色 (Electrochromic, EC) 是材料的光学属 性 ( 透过率、反射率或吸收率 ) 在外加电场作用下发 生稳定、可逆颜色变化的现象 [1] 。 1961 年 , 美国芝 加哥大学 Platt [2] 提出了 “ 电致变色 ” 的概念。到 1969 年 , 美国科学家 Deb [3] 首次报道了非晶态三氧化钨 (Tungsten Trioxide, WO 3 ) 的电致变色效应。随后 , 人 们开始对电致变色材料进行了广泛而深入的研究。 20 世纪 80 年代 , “ 智能窗 ” 概念提出后 [4] , 由于节能环 保、智能可控等优点 , 形成一波新的电致变色技术研究 热点 [5-10] 。随着研究的深入 , 特别是纳米技术的快速 发展 , 器件性能得到了大幅的提升 ( 图 1(a)) [11-13] , 电 致变色器件 (Electrochromic Device, ECD) 也逐渐实现 了产业化应用。 根据材料种类不同 , 电致变色材料可大致分为 有机电致变色材料和无机电致变色材料。相较而言 , 有机电致变色材料具有变色速度快、柔性好、可加 工性强和颜色变化丰富等优点 , 主要包括导电高分 子、紫罗精类小分子和金属有机螯合物等 [14] 。无机 电致变色材料具有光学对比度高、光学记忆性好和 环境稳定性高等优点 , 主要包括过渡金属氧化物以 及普鲁士蓝等 [15] 。目前 , 电致变色器件的结构主要 为类三明治结构 , 由两个透明导电层中间夹一层电 致变色活性层构成。根据电致变色材料种类不同 , 电致变色活性层可分为整体结构和分层结构。整体 结构是电致变色材料与电解质相互混合为一层 , 这 类结构主要针对紫罗精等小分子有机物。这类器件 在外加电场作用下 , 有机小分子扩散到电极表面或 以电解质中氧化还原剂为媒介发生氧化还原反应而 实现颜色变化 [16] 。分层结构是电致变色材料、电解 质和对电极 ( 或叫离子储存层 ) 依靠界面接触分层 ,