简介 Nazar 实验室的研究重点包括复合材料合成、物理/结构特性、电化学测试和各种储能设备的电极设计,这些设备可以以高速率存储和传输能量。重点是可充电电池的储能材料。新一代电极材料可以实现它们在插电式混合动力汽车中的应用。它们作为间歇性能源(如太阳能和风能)的储存器(即负载均衡器)也绝对至关重要。虽然锂离子电池是最先进的可充电电源,已为便携式电子产品取得了杰出的技术成功,但如果要实现这种大规模系统,那么材料方面的根本创新至关重要。纳米材料尤其有前途的新方向。它们提供了进入高容量系统领域的可能性,该系统基于氧化还原活性成分的紧密接触而运行。
1。简介粉红色镉(CD-chal)量子点(QD)是自1990年代初以来一直在合成和探索的最早的量子点[1,2]。它们是具有荧光性能的半导体材料,具有独特的光物理和结构特性,例如高量子产率,高光稳定性,单个窄发射带,宽的吸收带,高摩尔灭绝系数,较小的尺寸(2-10 nm),半导体性质,半导体性质和可修饰的表面[1-4]。具有独特的特性,CD-chal QD已被广泛用于许多不同的技术,例如太阳能电池,LED,生物技术,军事和医学[5-11]。由于它们具有出色的光物理特性,因此经常用于LED和太阳能电池应用[8,9],甚至高科技品牌(例如三星)都将QDS调整为其监视器系统[12,13]。
1。简介粉红色镉(CD-chal)量子点(QD)是自1990年代初以来一直在合成和探索的最早的量子点[1,2]。它们是具有荧光性能的半导体材料,具有独特的光物理和结构特性,例如高量子产率,高光稳定性,单个窄发射带,宽的吸收带,高摩尔灭绝系数,较小的尺寸(2-10 nm),半导体性质,半导体性质和可修饰的表面[1-4]。具有独特的特性,CD-chal QD已被广泛用于许多不同的技术,例如太阳能电池,LED,生物技术,军事和医学[5-11]。由于它们具有出色的光物理特性,因此经常用于LED和太阳能电池应用[8,9],甚至高科技品牌(例如三星)都将QDS调整为其监视器系统[12,13]。
围绕二鸟类蛋白蛋白蛋白蛋白蛋白体(包括许多在健康和疾病中至关重要的人)都是IDP的,并且在整体或部分结构上都在结构上不稳定,假设其形状和形式取决于其细胞上下文。在隔离时没有固定结构,它们不适合经典的DrugdiscoveryMethods,而遗传序列则无法准确预测其结构特性。因此,寻找和开发靶向靶向和结合这些蛋白质的严格设计的药物的努力可能会失败。转化生物物理公司peptone正在改变这一切。通过结合实验性生物物理学,原子级别的应用程序,高性能超级计算(HPC)和机器学习(ML),Peptone可以解锁IDP的潜力,并开拓了NovelepelapeuticsAgainStthisEntthisEntthisEntthisEntthisenterelynewlelynewclass的潜力。
摘要 - 聚噻吩和多吡咯是两个知名的导电聚合物,具有多种特性,并且在电子,传感器和能量存储等扇区中进行了多种潜在应用。本文进一步研究了聚噻吩和多吡咯的合成和分析。息肉吡咯和聚噻吩。分析这些聚合物所采用的方法包括光谱(UV-VIS,FTIR),热分析(TGA,DSC),显微镜(SEM,TEM)和电化学分析(环状伏安法)。研究了多吡咯和聚噻吩的几种特征,并与它们的电化学,热,形态和结构特性有关。我们还讨论了这些导电聚合物如何由于其表征所揭示的独特性能而在电气设备,传感器和能源存储系统中使用。聚噻吩和多吡咯烷现在可以在广泛的高科技应用中使用,因为它们的合成和特性是更众所周知的。
现代工程设计中,先进材料(如纤维/颗粒增强聚合物、金属合金、层状复合材料等)被广泛使用,其中晶粒、夹杂物、空隙、微裂纹和界面等微尺度异质性显著影响宏观本构行为。显然,准确描述材料的多尺度行为对于材料设计和结构分析的成功至关重要。代表性体积元 (RVE) 分析方法提供了一种严格的方法,可以从较低长度尺度的材料成分和结构特性中获得较高长度尺度上均匀的宏观材料特性。最近,我们在多物理场仿真软件 LS-DYNA 中开发了一个 RVE 模块(关键词:*RVE_ANALYSIS_FEM),可以在用户指定的特征长度尺度上对数值重建的材料样品进行高保真虚拟测试。在本文中,我们将简要介绍这一新功能。
先进材料的物理化学和热性能 光谱方法的热物理方面(成分、介电、声学、机械)。 功能电陶瓷材料:电介质、弛豫体、铁电体和多铁性材料。 四方钨青铜 (TTB) 和钙钛矿相关陶瓷的结构特性。 材料中的动态过程:模拟电介质偶极子的热诱导弛豫。 基本动力学和非均相过程动力学:等转化、高级线性增量程序、用于区分动力学模型的复杂动力学方法、主图。 复杂无机前体和有机(液晶、染料)化合物的热稳定性。 表面科学:薄膜和多孔材料。 用于获得软材料薄膜的激光辅助技术及其在生命科学中的应用。 科学贡献
摘要:功能梯度材料 (FGM) 在复合材料和层压板方面受到各科学和工程学会的广泛关注。这是一个独特的概念,可用于通过借助特定梯度改变材料的微观结构来形成各种类型的材料。FGM 的整体性能因其所用材料的性能而具有独特性和差异性。已经开发了许多制造 FGM 的技术,一些是传统的,一些是先进的。每种技术都有自己的优点和缺点。独特的物理、制造和结构特性使 FGM 应用广受欢迎且令人向往。本文列举了 FGM 制造过程的细节及其优缺点。它根据 FGM 的母材讨论了 FGM 在工程和工业领域的应用。本文将作为研究人员、设计人员和制造商了解 FGM 生产和应用的指导目录。关键词:功能梯度材料、复合材料、层压板。
金属有机框架(MOF)是具有不同,可调功能,高孔隙率和表面积的创新多孔材料,使它们有望在气体存储,分离和催化应用中使用。此外,它们的衍生物还补偿了MOF缺乏电子电导率和化学稳定性,为精确控制材料结构提供了新的最佳选择。已经基于MOF创建了许多有效的电催化剂,它们的衍生物是对金属空气电池中的O2降低/进化过程和二氧化碳的降低/进化反应。在这篇综述中,我们重点介绍了金属电池中MOF及其衍生物的最新发展,并探讨了这些材料的结构特性及其各自的作用模式。通过彻底审查MOF的收益,问题和前景,我们可以更好地了解电催化和能源储能技术的未来发展。
这项研究工作与使用干柠檬皮粉和环氧树脂的复合纤维板的制造有关,这些树脂可用作胶合板或木材的替代品。这项研究的目的是评估这种新型复合纤维板的机械和微观结构特性。评估其吸收能量的强度和能力,对不同的标本进行了不同的测试。为了理解树脂内的形态和填充颗粒分布,还使用扫描电子显微镜(SEM)检查了制造的复合材料的显微结构。根据实验发现,复合材料的机械性能,例如硬度22.45(维克斯),拉伸强度14.7 MPa,弯曲强度27.9 MPa和冲击强度21.76 J/m 2,在胶合板方面显得有前途。此外,SEM研究表明了浪费干燥柠檬皮颗粒(DLPP)和环氧树脂之间的完美键合,从而有助于改善机械性能。