摘要:本研究研究了烧结温度对BA1-XSRXTIO3陶瓷机械性能的影响。BA1-XSRXTIO3(x = 0.2)陶瓷通过溶胶 - 凝胶合成,并在不同的温度下烧结。我们使用适当的测试方法来描述机械品质,例如硬度,断裂韧性和弹性模量。结果表明,当烧结温度变化时,机械行为发生了很大变化。这显示了可以在高级电子和结构材料中使用的BA1-XSRXTIO3陶瓷的机械性能的重要处理条件。XRD模式表现出四方相,并且晶体尺寸随烧结温度的升高而增加。BST样品的表面形态看起来均匀且均匀,温度中等。高烧结温度,并且随着材料实现更好的谷物生长和填料的较高密度,从而降低了孔隙度。高烧结温度会由于提高致密性和孔隙率降低而提高机械强度,由于密度增加,较大,形成良好的晶粒和改善的断裂韧性,随着材料变得更致密和晶粒边界的形成更好,增强了裂纹,从而产生了更高的硬度。也发现(C/A比)随着烧结温度的升高而降低。
b'功能陶瓷对于电池的可扩展生产固体电解质至关重要。li-garnet li 7 la 3 Zr 2 O 12 D(LLZO),尤其是其立方相(Cllzo),由于其高LI + conductitivity和广泛的电化学稳定性窗口而引起了人们的注意。但是,高烧结温度引起了对阴极界面稳定性,生产成本和可扩展制造能源消耗的担忧。我们显示了一种替代\ Xe2 \ x80 \ x9csinter-free \ xe2 \ x80 \ x9d途径,以稳定Cllzo作为其烧结温度的一半胶片。具体而言,我们建立了一个时间温度的翻译(TTT)图,该图可捕获基于结晶焓分析的非晶态 - 结晶的LLZO转换,并确认在500 \ xc2 \ xc2 \ xb0的低温下进行薄膜薄膜的稳定稳定。可用于针对生产中碳足迹减少的电池电池设计。
摘要 共烧结低温陶瓷的增材制造 (AM) 为制造新型 3D 射频 (RF) 和微波通信组件、嵌入式电子设备和传感器提供了独特的途径。本文介绍了有史以来首次直接 3D 打印低温共烧结陶瓷/浮动电极 3D 结构。基于浆料的 AM 和选择性激光烧蚀 (SLB) 用于制造带有银 (Ag) 内部浮动电极的块状电介质 Bi 2 Mo 2 O 9 (BMO,烧结温度 = 620 – 650°C,ε r = 38)。开发了一种可打印的 BMO 浆料,并优化了 SLB,以改善边缘定义并烧掉粘合剂而不会损坏陶瓷。SLB 增加了保持形状所需的生坯强度,生产出无裂纹的零件,并防止共烧结过程中银渗入陶瓷。烧结后,将生坯部件放入传统炉中烧结,温度为 645°C,烧结时间为 4 小时,密度达到 94.5%,抗压强度达到 4097 MPa,相对介电常数 (εr) 为 33.8,损耗角正切 (tanδ) 为 0.0004 (8 GHz)(BMO)。由此证明了使用 SLB 后进行打印后烧结步骤来创建 BMO/Ag 3D 结构的可行性。
04 2020,Ankara,土耳其摘要。在这项研究中,B 4 C(5和10wt。%)颗粒增强的AL-15SI-2.5CU-0.5MG(ECKA Alumix231®)铝基质复合材料是通过冷媒体/烧结技术生产的。在三个不同的温度(555°C,580°C,605°C)下进行烧结过程。对所获得的样品进行密度测量,还检查了微结构分析和硬度测试。根据ASTM B962-08,通过Archimedes技术测量样品的密度。光学显微镜和扫描电子显微镜(SEM)用于显微结构研究。大智能测量是用Brinell硬度进行的。样品的绿色密度随着B 4 c wt。%的增加而降低。可以确定,随着烧结温度的升高,所有样品的密度均降低。据观察,随着烧结温度的升高,孔隙率会增加,孔变得更大。通过SEM和EDS分析确定 Al富含的固体溶液,主要Si和Cu和富含MG的相。 虽然在5wt。%颗粒增强复合材料中的硬度增加,但观察到10wt。%增强复合材料的硬度降低。 由铝制231粉末产生的样品在555°C时给出了最高的硬度值。 这些技术之一是粉末冶金(P/M)技术。 P/M技术自1990年代以来吸引了注意力研究人员。 已经尝试了工程材料的机械性能Al富含的固体溶液,主要Si和Cu和富含MG的相。虽然在5wt。%颗粒增强复合材料中的硬度增加,但观察到10wt。%增强复合材料的硬度降低。由铝制231粉末产生的样品在555°C时给出了最高的硬度值。这些技术之一是粉末冶金(P/M)技术。P/M技术自1990年代以来吸引了注意力研究人员。已经尝试了工程材料的机械性能关键字:粉末冶金,金属基质复合材料,密度,微观结构,硬度©2020由ICMATSE发布的引言工程材料具有各种化学成分和机械性能,使用不同的生产技术生产。