近年来,出现了许多论文讨论不同模型(如 CFT、结点理论等)的 magic 和 mana 属性 [1–3]。这些量表征此类模型中定义的某种量子力学状态与 Clifferd 群元素的距离 [4]。根据 Gottesmann-Knill 定理 [5],Clifferd 群元素可以在经典计算机上进行有效建模。因此,有人声称“magic”实际上是某种状态的非经典性,而 mana 则衡量这种非经典性。如果结合量子计算讨论这些属性,这些属性可能很重要。Gottesman-Knill 定理基于以下事实:Clifferd 群是所研究群 G 的一个有限子群,而 G 是几个 SU(N) 的张量积。然而,它并不是唯一的有限子群。对于同一个群 G ,可以定义无数个这样的子群。其中,克利福德群的定义性质是它与 sigma 矩阵的联系。从量子计算的角度来看,没有必要要求这一点。因此,根据想要向量子计算机呈现的问题集,可以对 mana 进行不同的定义。我们认为 mana 实际上是一种相对属性,而不是绝对属性。在本文中,我们将介绍克利福德群的通常定义方式以及如何对其进行修改以获得其他有限子群。我们将应用这个新的 mana 定义来研究结点状态。结点理论是一个被广泛研究的课题,与其他理论有很多关系。其中,结点理论与量子计算之间存在联系,它既提供了使用量子算法计算结点多项式的方法,也提供了将量子算法描述为有效拓扑场论中的一些结点配置 [14]- [19]。这涉及通过 Reshetikhin-Turaev 算法 [6]- [13] 使用酉矩阵计算结点。具体来说,对于某些特定的结点系列,任何量子算法都可以描述为一系列结点的连续近似 [18,19]。然而,在本文中,我们讨论了结点理论的不同方法。法力和魔法是量子态(密度矩阵)的属性,而不是酉运算。有一种方法可以定义对应于结点的量子态 [2],使用拓扑场论的思想 [20,21]。这个密度矩阵的矩阵元素由特殊点处的结点多项式构成。因此,这种状态的经典性为我们提供了有关如何在经典计算机上计算这些结点不变量的一些信息。论文组织如下。在第 2 章中,我们定义了 Clifferd 群,它是 SU ( N ) 群的一个有限子群。在第 3 章中,我们提供了 mana 的定义,就像其他关于该主题的论文(如 [1–3])中给出的那样。在第 4 章中,我们讨论了 mana 定义中的歧义,并展示了如何修改定义以给出与 SU ( N ) 的不同有限子群相关的 mana。在第 4 章中,我们根据 [2,20,21] 定义了描述不同结的量子力学状态。在第 5 章中,我们研究了结状态下的 mana 是什么样子,以及如何通过不同的 mana 定义来改变它。
8 结点放置策略 9 8.1 手动方法 . ... . ... . 22 8.11 结点初始化和候选结点位置 . . . . . . . . . . 22
8 结点放置策略 9 8.1 手动方法 . ... . ... . 22 8.11 结点初始化和候选结点位置 . . . . . . . . . . 22
8 结点放置策略 9 8.1 手动方法 . ... . ... . 22 8.11 结点初始化和候选结点位置 . . . . . . . . . . 22
8 结点放置策略 9 8.1 手动方法 . ... . ... . 22 8.11 结点初始化和候选结点位置 . . . . . . . . . . 22
考夫曼的研究领域是代数拓扑,尤其是低维拓扑和结理论,以及它们与数学物理和自然科学的关系。20 世纪 70 年代早期,他对高维结和高维流形上的奇异结构的研究使用了分支覆盖构造的概括,对于通过 Brieskorn 簇和代数奇点链表达的这些结构的拓扑理解至关重要。这些非标准可微结构的构造至今仍是个谜,并且肯定与基础物理学有关——就像 Brieskorn 研究的流形一样。考夫曼于 1980 年发现了亚历山大-康威多项式的状态求和模型,并于 1985 年发现了琼斯多项式的括号多项式状态模型。这些状态模型构成了分区函数在结不变量构造中的首次直接应用。在括号多项式模型中,考夫曼表明,这种状态总和是统计力学中 Potts 模型的一个版本 - 转换为结点图。他发现了原始琼斯多项式的二变量泛化,称为半定向或考夫曼多项式。自从这些发现以来,他的工作主要针对结点和链接的新不变量的结构。括号模型使考夫曼、Murasugi 和(独立)Thistlethwaite 证明了 Tait 猜想,即减少交替链接投影的交叉数的拓扑不变性。他在虚拟结点理论方面的研究开辟了结点理论的新领域,并发现了许多结点和链接的新不变量。特别是,考夫曼括号中的状态结构被米哈伊尔·霍瓦诺夫 (Mikhail Khovanov) 用于创建结点的霍瓦诺夫同源理论,产生了新的和微妙的不变量。 Dye、Kauffman 和 Kaestner 利用 Manturov 的构造将 Khovanov 同源性推广到虚拟结点理论,并以此方式完成了 Rasmussen 不变量的新版本。这导致了正虚拟结点的 4 球属的确定,而 Kauffman 应用此结果获得了
8 结点放置策略 9 8.1 手动方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 8.5 基于消除趋势的方法 . ... . ...
设计并制作了一种基于电流偏置约瑟夫森结 (CBJJ) 阈值行为的约瑟夫森辐射阈值探测器 (JRTD),用于低温红外辐射 (IR@1550nm) 检测。为了实现最佳性能,我们开发了一种二元假设检测方法来校准无辐射和有辐射时的约瑟夫森阈值行为(即 CBJJ 与 Al/AlO x /Al 结的开关电流分布)。在没有红外辐射的情况下,结点转变,结点两端的电压降可测量,该信号被视为假设 H 0 的事件。在有红外辐射的情况下观察到的结点转变事件作为假设 H 1 。考虑到通常的高斯噪声并基于统计决策理论,对测得的开关电流分布的累积数据进行处理,并估算了所演示的 JRTD 设备的阈值灵敏度。所提出的探测器的最小可探测红外辐射功率约为 0.74 pW,这对应于 5.692 × 10 6 光子/秒的光子速率。进一步优化 JRTD 以实现所需的单光子二元检测仍然是一个争论的主题,至少在理论上是如此。
热动力学与电路理论之间存在类比,以方便电气工程师计算热阻。图 1 显示了 TO-220 型封装的热动力学类比。器件结点处的功率耗散是能量源。在此示例中,定义了三个温度。实际上,温度可能更多。定义的三个温度为:T A = 环境温度、T C = 外壳温度和 T J = 结温。功率类似于电流源,温差类似于电压降,环境温度定义为地面或 0 伏,热阻类似于电阻。在此模型中,电容器 C jc(结点到外壳)和 C ca(外壳到环境)可用于模拟系统的动态热阻抗。随着电流(电源)的增加,电压(温度 -
颜色:绿色无味气味:不适用的熔点/冻结点:不适用的沸点或起点和沸腾区域:不适用的炎症:不适用的下爆炸限制极限:不适用的上部爆炸极限:不适用的爆炸点:不适用的Zündtttttpperativalsevipation coble oppainse noceptable kindemplosity decem decem decem decem decem decem decem decem decem:水溶性:不溶性