• 电感器:多层多圈铜和金电感器 • 钝化材料:SiON、Si 3 N 4 、BCB 和聚酰亚胺 • 过孔:溅射、增强镀层、填充和城堡状 • I/O:BGA、LGA、边缘包裹、通孔和引线或带状键合 • 加工: - CO2 切割、钻孔和划线 - 金刚石锯切割 - 背面研磨和抛光 • 组装: - 高精度 0201 或更大尺寸的拾取和放置 - 通过引线或带状键合、BGA、LGA 或表面贴装回流进行连接 - 封装 • 测试: - MIL-STD-105D II 级抽样 - MIL-STD-883 100% 目视检查 - 电容、绝缘电阻和电阻率 - 高达 40 GHz 的射频测试
■ 触点数量:半模块 - 72;全模块 - 144 ■ 间距:1.8 毫米 ■ 额定电流:每个触点 1.5625 A 每个电源晶片 12.5 A(使用 30°C 温升和 1 盎司铜降额) ■ 提取力:通常每个触点 1.2 盎司 ■ 额定温度:-55°C 至 125°C ■ 绝缘体材料:LCP(液晶聚合物) ■ 触点镀层:50 µin。镀金镍层 ■ 可燃性等级:UL94-VO ■ 介电耐压:500 VAC ■ 低电平电路电阻:最大 8 m Ω ■ 绝缘电阻:最大 500 M Ω ■ 随机振动:15 Grms,每轴 10 Hz 至 2000 Hz,持续 90 分钟,符合 MIL-STD-1344,方法 2005,测试条件 III ■ 机械冲击:100 G,6 ms 锯齿响应,符合 MIL-STD-1344,方法 2004,测试条件 G
测量电路(终端之间的绝缘测量L(+) / L( - )和PE / KE)端子L(+)和L( - )连接到要监视的电源。损坏的电线检测在操作过程中不断有效,如果两个端子都没有通过电源与低电阻连接,则会生成错误消息。此外,必须通过单独的线将两个端子PE和KE连接到保护导体系统。如果中断一条线,此处也会给出一个错误消息(请参阅“连接故障的操作”部分)。如果主测量电路被激活(端子HM打开),则在L(+) / L( - )和PE / KE之间应用具有交替极性的主动测量电压,以测量绝缘电阻。在呈正极性的测量阶段,“ HM” LED闪烁具有长相期的频率,并且具有较短的同相的负极性。当主测量电路通过端子HM-G的桥梁关闭时,“ HM” LED熄灭。测量是悬挂的,并且不再需要测量电压到达测量电路,因此,如果将另一个绝缘监视器的网络耦合到网络中,则不会发生干扰。正值和负测量阶段的长度取决于旋转开关“ CE/µF”的设置,被监视网络的实际泄漏电容以及DC网络的实际泄漏电容,取决于可能的电源电压波动的水平和持续时间。因此,在不同的主电源条件下给出了正确的快速测量。在每个测量阶段结束时确定并分析当前的绝缘电阻。如果有特别不利的条件和重大干扰,则可以在必要时稳定和延迟测量分析。LED链显示了确定的电阻,并根据相应的响应值设置的前响应“大众”和警报“ AL”开关的输出继电器。如果响应阈值已降低,则根据绝缘故障位置的LED“大众”或“ Al”光:“+”,“” - “或“+”和“ - 对于交流断层或对称绝缘断层。
1001 气压,降低(高海拔操作) 1002 浸没 1003 绝缘电阻 1004.7 防潮性 1005.8 稳态寿命 1006 间歇性寿命 1007 一致寿命 1008.2 稳定烘烤 1009.8 盐雾环境(腐蚀) 1010.7 温度循环 1011.9 热冲击 1012.1 热特性 1013 露点 1014.10 密封 1015.9 老化测试 1016 寿命/可靠性特性测试 1017.2 中子辐照 1018.2 内部水蒸气含量 1019.4 电离辐射(总剂量)测试程序 1020.1 剂量率诱发闩锁测试程序1021.2数字微电路的剂量率翻转测试 1022 Mosfet 阈值电压 1023.2线性微电路的剂量率响应 1030.1预封装老化 1031 薄膜腐蚀测试 1032.1封装引起的软错误测试程序(由阿尔法粒子引起) 1033 耐久性寿命测试 1034 芯片渗透测试(针对塑料设备)
本文的目的是证明有关预测电化学迁移(ECM)引起的故障的案例研究,该迁移发生在印刷电路板上(PCB)。首先,提供了本研究中使用的栅极驱动程序PCB的简要介绍。在冷凝条件下,研究了在受弱有机酸(WOA)污染的PCB板上发生的电化学反应。基于Comsol,提出了一种方法来模拟电化学反应。要校准模拟中使用的参数,测量了表面绝缘电阻(SIR)上的泄漏电流(LC)。因此,执行了一个参数优化过程,以确保模拟LC匹配测量数据。为了验证所提出的方法,在门驱动器PCB上执行湿度测试。在测试中观察到的失败与模拟LC密度进行了比较,该密度被用作形成ECM的指标。最后,当PCB在实际操作条件下运行时,进行仿真。模拟确定可能发生在PCB上的可能发生的ECM路径。
关键功能■最多1200V电池模块仿真电压■高达600A电池模块模拟当前,实际验证和SOC,SOH和其他BMS参数的实际验证和校准■电池电池模拟的硬件单通道的25W/5V/5A的单个通道电源,5V/5A的单个通道电源■HI-POT测试和绝缘电阻模拟■电池电池的主动和被动平衡策略的动态验证■对高电池电压继电器的实时监控开放/关闭,初始电源输出,可以发出信号和其他时间■支持,可以,可以,can can fd,lin Interfaces■lin Intertfaces■用于全面的ISO26262622626226226226262的范围■导入in ullulliged dectrif contressign uniged Insultife n sim vercip and in Simbirife n sim vercip an WLTP等。驾驶模式■通过ASAM XIL和ASAM XIL-MA支持高级自动测试软件■独立PLC监视系统,以确保测试床的安全
本数据表中提供的信息描述了产品的某些技术特征,但不得在第443节和德国民法典第443节和第444节中被视为质量保证(Beschaffenheitsgarantie)。本数据表中提供的有关测量值的信息(包括但不限于响应时间,长期稳定性,振动和电击性,绝缘电阻和自热性)是在实验室条件下在大量产品测试中获得的平均值。在任何生产,测试或其他环境中,客户或任何其他人实现的产品结果或测量结果可能会根据特定的使用条件而有所不同。Yageo Nexensos不建议将标准目录产品或汽车等级使用用于航空航天应用或载人太空飞行。客户负责确定该产品是否适合客户的预期用途;在这方面,Yageo Nexensos不能承担任何责任。Yageo Nexensos出售的任何产品仅在购买时在当前版本中以Yageo Nexensos的一般销售和交付条款约束,该条款可根据www.yageo-nexensos.com/tc或可以根据要求提供。此数据表将经过更改,恕不另行通知。
高 I/O 密度和绿色材料是倒装芯片和 3D IC 封装用封装基板的两大主要驱动力。未来的有机层压基板将需要 5-25 µ m 的线宽和间距以及 50-100 µ m 的封装通孔 (TPV) 间距。这种超细间距要求将因电化学迁移和导电阳极丝 (CAF) 而导致严重的基板故障。因此,有必要开发新型无卤材料并研究其在超细间距应用中的可靠性。这项工作主要集中在四个领域:1) 先进的无卤材料,2) 细线宽和间距中的表面绝缘电阻 (SIR),3) 细间距 TPV 中的导电阳极丝 (CAF),以及 4) 倒装芯片互连可靠性。本研究选择的基板材料包括在聚合物主链上加入无卤阻燃剂的树脂配方。在具有 50 µm 间距铜线的基板上研究了 SIR,并在具有 150 µm 和 400 µm 间距 TPV 的基板上研究了 CAF。在这两项测试中,都观察到无卤基板与溴化 FR-4 相比表现出更好的电化学迁移阻力。通过对测试基板进行热循环测试 (TCT)、无偏高加速应力测试 (U-HAST) 和高温存储 (HTS) 测试来研究倒装芯片可靠性。在每次可靠性测试后都进行扫描声学显微镜 (C-SAM) 分析和电阻测量。测试基板分别通过了 200 小时的 HTS、96 小时的 HAST 和 2000 次 TCT 循环。倒装芯片可靠性结果表明,这些材料有可能取代传统的卤化基板用于高密度封装应用。关键词:无卤素基板、表面绝缘电阻、导电阳极丝、倒装芯片可靠性 简介 电子产品向无卤素材料的转变始于 1994 年德国通过的《二恶英法》。从那时起,欧盟 (EU) 制定的生态标签成为印刷线路板采用无卤素材料的驱动力。卤素通常添加到 PWB 中使用的聚合物玻璃复合材料中以达到阻燃效果。然而,卤素材料在特定的燃烧条件下会形成多溴二苯并二恶英 (PBDD) 和多溴二苯并呋喃 (PBDF),这会对环境和健康造成严重风险。在这方面,无卤材料比卤素材料优越得多,并且在回收过程中也很有用 [1]。印刷电路板研究所