关于合作 交通电气化要求更多地使用高压系统,这对在严苛环境中部署的绝缘材料提出了更高的要求。在此次合作中,aHV 使用其自有设施对各种类型的绝缘系统进行老化处理,包括用于电机和电缆系统的绝缘系统。测试项目包括用高性能聚合物 Kapton(聚酰亚胺)、聚醚醚酮 (PEEK) 和 PAI 绝缘的样品。然后将这些样品与新的、未使用过的和未测试过的样品一起提供给 Royce 作为对照。Royce 利用一系列不同的分析手段对这些未老化和老化样品进行了特性分析,其中包括 X 射线计算机断层扫描、气相色谱-质谱、扫描电子显微镜和摩擦学(硬度测试)。Royce 能够对使用过的和全新的绝缘材料进行详细的分析和比较。结果 Royce 能够准确定位和成像由电气故障引起的故障位置,并进一步能够表征由逐渐的热和电老化引起的降解反应的副产品。作为一家小型企业,aHV 不具备开展这些特性描述活动所需的设施;因此,Royce 能够通过其独特的合作伙伴模式提供全面的访问权限,确保在需要时使用适当的专业知识。aHV 专注于电动汽车绝缘系统的开发、设计和测试——这对于这些系统中使用的电动机、电缆、连接器和电源转换器的开发至关重要。此次合作意味着 aHV 对可用于评估绝缘系统性能的技术有了更深入的了解,并且可以通过 Royce 增强他们向行业合作伙伴提供的服务。
第 1 章 简介 1 1.1 简介 1 1.2 定子绕组绝缘系统 3 1.2.1 线束和匝绝缘 4 1.2.2 接地壁绝缘系统 5 1.2.3 应力分级系统 7 1.3 PWM-VSC 波形应力 8 1.3.1 非线性电压分布引起的应力 10 1.3.2 电缆长度的影响 12 1.3.3 局部放电 (PD) 侵蚀 13 1.3.4 空间电荷的后果 14 1.4 文献综述 18 1.4.1 电磁线涂层中的空间电荷积累、捕获和电荷注入 18 1.4.2 纳米填充电磁线的性能 20 1.4.3 建模 22 1.4.4 接地壁绝缘的评估 23 1.5 本研究的目的工作和论文组织 25 第 2 章 材料、实验设置和建模 27 2.1 简介 27 2.2 材料 27 2.2.1 磁线基材 27 2.2.2 磁线外涂层纳米填料 28 2.2.3 绝缘试验的匝间样本 31 2.2.4 接地壁测试样品的制备 34 2.3 统计分析 35 2.3.1 威布尔分析 37 2.4 具有匝间应力的系统建模 38 2.4.1 有限元法 (FEM) 39 2.5 固体电介质中存储电荷的表征 40 2.5.1 热刺激去极化电流 (TSDC) 方法 41 2.5.2 存储电荷和捕获能级 43 2.6 实验设置 43 2.6.1 PD 测量 44 2.6.2 使用红外摄像机进行温度测量 46 2.6.3 TSDC 测量 48 2.6.4 脉冲老化测试电路 50 2.6.5 用于表面粗糙度测量的 SEM 和图像工具软件 55
第 1 章 简介 1 1.1 简介 1 1.2 定子绕组绝缘系统 3 1.2.1 线束和匝绝缘 4 1.2.2 接地壁绝缘系统 5 1.2.3 应力分级系统 7 1.3 PWM-VSC 波形应力 8 1.3.1 非线性电压分布引起的应力 10 1.3.2 电缆长度的影响 12 1.3.3 局部放电 (PD) 侵蚀 13 1.3.4 空间电荷的后果 14 1.4 文献综述 18 1.4.1 电磁线涂层中的空间电荷积累、捕获和电荷注入 18 1.4.2 纳米填充电磁线的性能 20 1.4.3 建模 22 1.4.4 接地壁绝缘的评估 23 1.5 目的本论文的主要内容和论文组织 25 第 2 章 材料、实验装置和建模 27 2.1 简介 27 2.2 材料 27 2.2.1 磁线基材 27 2.2.2 磁线外涂层纳米填料 28 2.2.3 绝缘试验匝间试样 31 2.2.4 接地壁试验样品的制备 34 2.3 统计分析 35 2.3.1 威布尔分析 37 2.4 具有匝间应力的系统建模 38 2.4.1 有限元法 (FEM) 39 2.5 固体电介质中存储电荷的表征 40 2.5.1 热刺激去极化电流 (TSDC) 方法 41 2.5.2 存储电荷和捕获能级 43 2.6 实验装置43 2.6.1 PD 测量 44 2.6.2 使用红外摄像机进行温度测量 46 2.6.3 TSDC 测量 48 2.6.4 脉冲老化测试电路 50 2.6.5 用于表面粗糙度测量的 SEM 和图像工具软件 55
第 1 章 简介 1 1.1 简介 1 1.2 定子绕组绝缘系统 3 1.2.1 线束和匝绝缘 4 1.2.2 接地壁绝缘系统 5 1.2.3 应力分级系统 7 1.3 PWM-VSC 波形应力 8 1.3.1 非线性电压分布引起的应力 10 1.3.2 电缆长度的影响 12 1.3.3 局部放电 (PD) 侵蚀 13 1.3.4 空间电荷的后果 14 1.4 文献综述 18 1.4.1 电磁线涂层中的空间电荷积累、捕获和电荷注入 18 1.4.2 纳米填充电磁线的性能 20 1.4.3 建模 22 1.4.4 接地壁绝缘的评估 23 1.5 本研究的目的工作和论文组织 25 第 2 章 材料、实验设置和建模 27 2.1 简介 27 2.2 材料 27 2.2.1 磁线基材 27 2.2.2 磁线外涂层纳米填料 28 2.2.3 绝缘试验的匝间样本 31 2.2.4 接地壁测试样品的制备 34 2.3 统计分析 35 2.3.1 威布尔分析 37 2.4 具有匝间应力的系统建模 38 2.4.1 有限元法 (FEM) 39 2.5 固体电介质中存储电荷的表征 40 2.5.1 热刺激去极化电流 (TSDC) 方法 41 2.5.2 存储电荷和捕获能级 43 2.6 实验设置 43 2.6.1 PD 测量 44 2.6.2 使用红外摄像机进行温度测量 46 2.6.3 TSDC 测量 48 2.6.4 脉冲老化测试电路 50 2.6.5 用于表面粗糙度测量的 SEM 和图像工具软件 55
第 1 章 简介 1 1.1 简介 1 1.2 定子绕组绝缘系统 3 1.2.1 线束和匝绝缘 4 1.2.2 接地壁绝缘系统 5 1.2.3 应力分级系统 7 1.3 PWM-VSC 波形应力 8 1.3.1 非线性电压分布引起的应力 10 1.3.2 电缆长度的影响 12 1.3.3 局部放电 (PD) 侵蚀 13 1.3.4 空间电荷的后果 14 1.4 文献综述 18 1.4.1 电磁线涂层中的空间电荷积累、捕获和电荷注入 18 1.4.2 纳米填充电磁线的性能 20 1.4.3 建模 22 1.4.4 接地壁绝缘的评估 23 1.5 本研究的目的工作和论文组织 25 第 2 章 材料、实验设置和建模 27 2.1 简介 27 2.2 材料 27 2.2.1 磁线基材 27 2.2.2 磁线外涂层纳米填料 28 2.2.3 绝缘试验的匝间样本 31 2.2.4 接地壁测试样品的制备 34 2.3 统计分析 35 2.3.1 威布尔分析 37 2.4 具有匝间应力的系统建模 38 2.4.1 有限元法 (FEM) 39 2.5 固体电介质中存储电荷的表征 40 2.5.1 热刺激去极化电流 (TSDC) 方法 41 2.5.2 存储电荷和捕获能级 43 2.6 实验设置 43 2.6.1 PD 测量 44 2.6.2 使用红外摄像机进行温度测量 46 2.6.3 TSDC 测量 48 2.6.4 脉冲老化测试电路 50 2.6.5 用于表面粗糙度测量的 SEM 和图像工具软件 55
锂离子电池(LIBS)由于其轻巧,能量致密和可充电性能而彻底改变了社会。由于能源消耗的增加和扩大绿色能源在更可持续的未来的愿望,市场上对Libs的需求很高。使用LIB的使用需要某些安全风险,其中电池有时可以进入称为热失控(TR)的状态。该状态会引起暴力和难以脱落的火灾。如果它发生在电池组中,则在一个单元中TR会迅速扩散到周围的细胞,对其附近的人们施加了更大的安全风险。可以使用TR的风险并停止在电池组中扩散,可以利用主动或被动冷却系统。需要考虑重量,音量和物体价格时,通常会使用被动系统。在这项研究中,已经为被动冷却系统制造了高温电导率(TC)复合材料,目的是减轻LIB包装中的TR。制造过程已有多种多样,以研究其对复合材料的影响。复合材料本身由热固性矩阵(IN2输注环氧树脂)和六角形氮化硼(H-BN)颗粒的增强。用75 wt%H-BN的固体加载制造高的TC复合材料,混合在谐振的声学混合器中,压在液压压力机中,然后在室内空气中固化过夜。密度为1.81 g/cm 3,TC在6.1-6.9 w/mk之间。材料是电绝缘的,具有高机械强度。进行了过度充电测试。一个原型专为七个Libs设计,并成功地制造了。可以得出结论,冷却效果太低,原型很可能无法在几个LIB包装的实际情况下减轻TR。但是,该测试证实了该复合材料可以承受300°C的温度。基于注射器的3D打印机用于打印复合材料,在实现的无效内部方面取得了令人鼓舞的结果。由于可以实现的潜在材料节省和制造改进,因此需要在该领域进行更多的工作。
自从在 Cr 2 Ge 2 Te 6 [1] 和 CrI 3 [2] 的单层和双层中发现长程磁序以来,许多单层或几层厚度的(反)铁磁范德华材料已被发现。由于层间和层内交换以及磁各向异性的相互作用导致自旋纹理丰富,它们是自旋电子学的理想平台。许多反铁磁范德华材料在低温下是电绝缘的,这意味着不存在自由载流子引起的磁化衰减。因此,它们对于研究磁序的集体激发,即自旋波及其量子,磁振子 [3, 4] 具有吸引力。传统磁体中的磁振子输运已得到广泛研究,例如,通过自旋泵浦 [5]、自旋塞贝克效应 (SSE) [6] 和电磁振子自旋注入/检测 [7]。反铁磁体赤铁矿 [8]、氧化镍 [9] 和 YFeO 3 [10] 中的长距离磁振子传输已被证实。低阻尼亚铁磁钇铁石榴石 (YIG) 超薄膜是高效磁振子传输的首选材料,它以强烈增强的磁振子电导率形式显示出二维 (2D) 相对于三维 (3D) 传输的有益效应 [11]。温度梯度驱动的磁振子自旋输运 (SSE) [12] 已被报道存在于铁磁和反铁磁范德华材料中 [13, 14]。然而,局部和非局部 SSE 仅提供有关磁振子传输特性的复杂信息。热磁振子电流是由整个样品中的热梯度产生的,因此很难区分磁振子弛豫长度和磁振子自旋电导率 [7, 11]。CrCl 3 [15] 的反铁磁共振揭示了声学和光学磁振子模式的存在,但并未解决它们在自旋输运中的作用。因此,为了评估范德华磁体在自旋电子学应用中的潜力,我们必须研究由微波或我们将在此处展示的电注入局部产生的磁振子的传播。
什么是体现的碳?翻新中的体现碳包括整个建筑材料生命周期中产生的所有二氧化碳排放,从提取和加工到运输,组装,拆除和材料再利用或处置。在翻新中最大程度地减少体现碳,对于促进可持续性目标和减少环境影响至关重要。IKO Peraphalt Li如何有助于减少具体的碳?通过完全控制供应链,IKO确保了负责任的采购,制造和运营流程,从而使我们能够降低许多最受欢迎的产品的体现碳。为了帮助客户计算其二氧化碳节省,我们提供了一个具体的碳计算器,使确定选择IKO解决方案的环境优势变得更加容易。Peraphalt Li如何适应IKO的可持续性目标?作为行业领导者,Iko致力于减少其环境足迹并推动积极的变化。 Peraphalt li对我们的可持续发展策略至关重要,减少了体现的碳并改善了我们产品的环境性能。 这与我们基于科学的目标(SBT)降低所有操作的排放量相一致,其中包括:•到2050年净零排放,范围1、2和3排放量减少了90%。 •到2030年,范围1和2排放量的降低了42%(相比之下)。 通过选择Persaphalt Li,客户支持高性能屋顶和向低碳建筑业的过渡,与Iko对可持续性和可靠性的承诺保持一致。作为行业领导者,Iko致力于减少其环境足迹并推动积极的变化。Peraphalt li对我们的可持续发展策略至关重要,减少了体现的碳并改善了我们产品的环境性能。这与我们基于科学的目标(SBT)降低所有操作的排放量相一致,其中包括:•到2050年净零排放,范围1、2和3排放量减少了90%。•到2030年,范围1和2排放量的降低了42%(相比之下)。通过选择Persaphalt Li,客户支持高性能屋顶和向低碳建筑业的过渡,与Iko对可持续性和可靠性的承诺保持一致。iko Persaphalt li适合哪种类型的屋顶?iko Persaphalt li用途广泛,可以应用于平坦,倾斜或弯曲的表面。它创建了一个连续的,无缝的防水膜,可在管道和屋顶灯等屋顶投影周围起作用。该解决方案适用于混凝土,木材和轮廓金属屋顶甲板,以及绝缘且没有绝缘的屋顶。,由于其耐用性和承受沉重的脚步能力,这也是露台,通道和绿色屋顶的理想选择。
我们很高兴提出问题号超导新闻论坛的第57卷,其中包括2024年9月在盐湖城庆祝的应用超导会议的23个新演讲,该奖项摘要在那里颁发了颁奖典礼,并宣布了Guy Deutscher。首先,包括来自ASC-24的四个全体会谈,对应于:Ezio Todesco博士,Kazumasa Iida博士,Alex Gurevich博士,Alex Gurevich博士和Kenneth Segall博士。我们提醒您,在ASC-24进行的所有全体会议的视频录制也将在ASC-24网站的某个阶段包括在内。我们包括与几个会议相对应的ASC-24的19次邀请演讲,我们希望能够增加未来SNF问题中受邀演讲的数量。首先,我们包括与普通大型会议相对应的三场演讲,六次对应于两个大型特殊会议的对话和两个对应于联席会议大规模材料的联席会议的演讲。前三个对应于Min Zhang博士,LoïcQuéval博士和Paolo Ferracin博士。特殊会议的人由:Ziad Melhem博士,Sastry Pamidi博士,Kathleen Amm博士,D。ScottHolmes博士和Mark Bird博士(超导全球联盟); Stuart Wimbush博士(融合公私合作伙伴关系); Brian Labombard博士和Sam Tippetts博士(联席会议:非绝缘的Rebco磁铁真的是自我保护的吗?)。第二,我们包括四个与材料会议相对应的演讲,一个来自普通会议,三个来自材料特别会议。第一个对应于Teresa Puig博士的演讲,其他三个对Mike Sumption博士,E。Hellstrom博士和Xavier Obradors博士(超导材料的挑战和机会)。第三,我们从普通电子会议中选择了两次演讲,并从电子特别会议上选择了两次演讲。前两个谈话对应于Naoki Takeuchi博士和Logan Howe博士。在特别会议上提出的那些人由:Yue Jiang博士和Elisabeth van Assadelft博士(用于轴突搜索的超导量子传感)。This SNF Issue also includes a list, and some images, of the Awardees recognized by IEEE – CSC at ASC-24 for: Continuous and significant contributions in the field of applied superconductivity (Large Scale and Materials), Sustained service to the applied superconductivity community, Fellow class, Van Duzer Award, Entrepreneurship award and Graduate Study Fellowships in applied superconductivity.最后,我们在“ Memoriam”部分,of.来自特拉维夫大学的Guy Deutscher。
简介该计划的目的是概述LFRS的承诺,以最大程度地减少其对环境的影响,并为将有助于长期成就零净成就的行动进步提供明确的方法。这是到2050年的净净零五年计划中的第一个计划中的第一个。国家消防局委员会已经发布了一个环境,可持续性和气候变化工具包,以供消防和救援部门使用。目的是使该行业能够共享一系列研究,数据,信息,良好实践和案例研究。他们的愿景是“保护我们的社区……保护我们的星球……保护我们的未来”。在制定该环境可持续性计划时,LFRS广泛使用了工具包1。我们需要我们的世界和社区才能可持续,不仅是为了我们这一代,而且对于后代。很容易专注于即时和本地。很难看到我们现在的行动将在英国产生影响,并且对世界其他地区的影响更大,不仅是今天,而且在将来。这是一个领导地球上每个人的领导挑战。升高的温度将对我们社区中最脆弱的人产生最大的影响,例如降低食物和水的供应性。气候变化已经对消防和救援服务产生影响;我们正在回应新的风险,例如野火和旨在解决气候变化的新技术,例如电动汽车,锂离子电池和高度绝缘的建筑物。但是,消防和救援服务并不是可持续的。传统思维可能会导致我们得出结论,答案在于改变加热系统,绝缘建筑物,转向电动舰队和种植树木。这项工作对于贡献净零是必不可少的,但环境可持续性却更大。保护环境,减轻和适应气候变化是创造可持续未来的关键部分。它们的存在是通过预防,保护和响应活动来减少风险和脆弱性。我们可以选择是否以可持续性的方式实现这一目标,但是可持续性(如平等,多样性和包容性)并不是一个自我限制的目标。它削减了我们工作的所有领域。为了预防,最容易受到火灾和其他紧急情况的影响也可能由于气候变化而受到威胁。12亿人居住在2050年到2050年因热量而无法居住的地方。这将导致需要帮助的人群和增加需要帮助的弱势群体。用于保护,建筑构造,供暖和隔热方法将改变,创造新的和新兴的风险。我们的反应活动也会改变,响应更多极端的洪水,风暴和野火事件。炎热和干燥时期可能会导致土壤结构的变化和建筑物崩溃的风险。我们如何实现我们的预防,保护和响应活动需要改变。为了支持净零,我们的建筑物将需要更改,我们的车辆将需要以不同的方式加油。我们的采购将需要考虑可持续性。该工具包的1个部分已被直接使用或在本计划的各个部分中进行了调整,包括此介绍。