表1。从八个物种制备的无核能总RNA文库中检测到的%rRNA值和基因数量。通用的人/小鼠/大鼠参考RNA,牛胎盘RNA,番茄和小麦叶RNA以及从沉淀的绿藻细胞中提取的RNA和内部成年酵母菌培养物用作输入(每位图书馆100 ng)。每个库的数据分析使用了3000万读对(150 bp配对)。修剪大奖!v0.6.6,Star v2.6.1d,Samtools v1.9和farmaturecounts v2.0.1用于修剪,对齐,过滤/索引和读取计数分配。RRNA基因/外显子的分类及其读取是基于UCSC基因组浏览器的注释和retoMasker rRNA轨道的基础。 用于分析的参考基因组是组件GRCH38(H。SAPIENS),CRCM39(M。MUSCULUS),RNOR_6.0(R。NORVEGICUS),ARS-UCD1.2(B. Taurus),SL3.0,SL3.0,SL3.0(S. lycopersicum),IWGSC(iwgsc),IWGSC(iwgsc),iwgsc(iwgscim),chlamans,C。c. c. c. c. c. c. c. anasen nasunson。 Reinhardtii)来自Ensembl和Refseq的ASM18296V3(C. albicans)。 tpm,百万分的成绩单。RRNA基因/外显子的分类及其读取是基于UCSC基因组浏览器的注释和retoMasker rRNA轨道的基础。用于分析的参考基因组是组件GRCH38(H。SAPIENS),CRCM39(M。MUSCULUS),RNOR_6.0(R。NORVEGICUS),ARS-UCD1.2(B. Taurus),SL3.0,SL3.0,SL3.0(S. lycopersicum),IWGSC(iwgsc),IWGSC(iwgsc),iwgsc(iwgscim),chlamans,C。c. c. c. c. c. c. c. anasen nasunson。 Reinhardtii)来自Ensembl和Refseq的ASM18296V3(C. albicans)。tpm,百万分的成绩单。
1.1从Solent流域排出的高水平的氮被认为是导致绿藻过度生长(一种称为富营养化的过程),该藻类对该地区的国际保护栖息地产生了公认的,有害的影响。1.2随着欧洲判例法的变化,自然英格兰(政府的自然环境顾问)建议地方规划机构(LPA),所有涉及或产生额外夜间过夜的新开发项目都应是“养分中性”,因为一种方法是确保开发不会增加现有的营养费。必须适当解决新开发项目对水质产生的其他废水的影响,以便为了评估适当的建议1,以结论对栖息地站点没有不利影响(以及理事会在法律上符合法律规定的决定)。1.3缓解措施成为“营养中性” 2的额外住宅(包括住宅的强化),与旅游业相关的发展以及由于产生额外的废水所产生过夜的任何其他发展所必需的。1.4朴茨茅斯市议会(PCC)批准了新住宅的首个临时营养中性缓解策略,以应对2019年11月缓解需求。迄今为止的战略重点是从水效率提升到理事会的住房库存的“缓解信用”,以确保该市的氮产量净增加。也有通过这种“照常”生成的缓解来源仅设想能够在有限的时间内(可能是2 - 3年)提供“信用额”,但要监视开发行业对水效率提升的工作以及对累积的“信用银行”的需求。,随着理事会的升级计划的持续,该来源的预计能力正在减少,尽管Covid-19-19大流行限制降低了实际节省水量,但仅将工作限制为基本工作。1.5汉普郡和怀特野生动物信托(Hiowwt)的汉普郡和岛已开发了一种“基于自然的解决方案”,以提供缓解氮的方法。该计划是通过收购目前将高水平的养分(氮)释放到solent中并改变其管理方式的大量管理的农田(即放牧较少或留给“重野”,以产生较低的氮输出;然后,可以使用氮输出的差异来抵消新开发的影响。
picochlorum,是微藻生物学的新兴模型。是绿藻进化枝(Trebouxiophyceae)的成员,并于2004年发现,P。senew3的基因组于2014年首次出版,发现是在真核生物中最小的(13MB)和最小的基因密集(7k基因)之一,在真核生物中(Henley等人)(Henley等人(Henley等)(Henley等人)(Henley等人,2004年; 2004年; fofllonke an an an al an an al an al an an an an an al al an an an an an al al an an an al an an an an an an an an an an。picochlorum非常耐受性,并且具有快速的增长率,使其成为了解气候变化和病毒感染的良好候选者。尽管具有工业潜力,但其光合作用反应和新陈代谢仍未清楚。此外,地中海沿海泻湖中越来越多的皮克洛鲁姆盛开量是牡蛎养殖(THAU)的环境问题,从而损害了牡蛎的生长,无法消耗小藻类。因此,了解picochlorum种群在本质上,尤其是病毒的调节是一般的重要性。在Biam和Mio Labs之间的新兴合作中,该项目的假设(已经由AMU Transivir 2022-2025项目资助),我们已经与Berre Lagoon隔离并测序了一个Picochlorum,并将其测序为“ Pico A”。我们还隔离了在PICO A中复制的各种巨型病毒,这些病毒的一部分具有基因组,其中包含两个非常古老的辅助代谢基因(AMG)。巨型病毒在这些酶中可以使用什么使用?它们是否在感染过程中调节宿主细胞代谢以提高复制效率?使受感染的宿主在人群中更具竞争力?picochlorum sp。这些基因代码对于血红素氧化酶(HMOX)和植物苯胺蛋白:铁毒素氧化还原酶(PCYA)一种在藻类叶绿体中产生色素具有重要调节功能的途径:具有重要调节功能:叶绿素合成的叶绿素(Zhang et al。稳定光系统I(Wittkopp等,2017)。我们博士项目的主要目的是将分子生物学和遗传学方案调整为PICO A,目的是通过操纵HMOX和PCYA来了解巨型病毒 - 微藻相互作用。博士学位候选人还将尝试使用工程化的CRISPR/CAS9 PICO A作为底盘,以在感染期间设计我们的巨型病毒(Noel等,2021; Bisio等,2023)。由于其对温度和盐度的耐药性高以及前所未有的2小时双倍时间,作为可再生生物量的来源,人们获得了越来越多的兴趣。但是,它的光合作用和异养代谢几乎完全没有表征,并将提供理解其适应性的关键之一。因此,我们在该项目中的支持目的是对电子流,光保护途径和二氧化碳摄取机制进行完整的光合特征,并评估其在还原碳源上生长的能力。共同服务员
地址:1印度梅萨斯纳的生物学,市政艺术和城市银行科学学院 - 印度384002。2北古吉拉特大学Hemchandracharya北古吉拉特大学生命科学系,古吉拉特邦帕坦 - 印度384265。 *通讯作者:Maitri Thakor,Maitrithakor9820@gmail.com收到:16-08-2023;接受:22-01-2024;发表:14-04-2024 doi:10.21608/ejar.2024.229025.1428摘要食用绿色藻类物种是世界上分布最广泛和最多的宏观藻类,被认为是生物活性分子的重要来源,它是用于营养和营养应用的多生产能来源的重要来源。 目前的调查是关于从三种绿色海洋藻类Ulva Conglobata,Caulerpa racemosa和Bryopsis plumosa的三种生物化学成分进行的,该研究是从印度古吉拉特邦Veraval Chowpati海岸收集的。 使用UV-分光光度计分析生化成分,以评估其食物价值并在研究期间找出组成的变化。 bryopsis plumosa中的还原糖,脯氨酸和淀粉含量很高,随后是Caule RPA Racemosa和Ulva Conglobata。 脯氨酸含量高于三种藻类物种的总氨基酸。 lowry方法之后的蛋白质含量caulerpa racemosa的含量很高,1667.32±18.42(µGG-1干wt。) 接着是bryopsis plumosa 1394.98±18.78(µGG-1干wt。) 和Ulva Conglobata 292.72±17.85(µGG-1干wt。)。 在Bryopsis Plusmosa和Caulerpa racemosa中,蛋白质含量的记录最大,而不是在Ulva Conglobata中。2北古吉拉特大学Hemchandracharya北古吉拉特大学生命科学系,古吉拉特邦帕坦 - 印度384265。*通讯作者:Maitri Thakor,Maitrithakor9820@gmail.com收到:16-08-2023;接受:22-01-2024;发表:14-04-2024 doi:10.21608/ejar.2024.229025.1428摘要食用绿色藻类物种是世界上分布最广泛和最多的宏观藻类,被认为是生物活性分子的重要来源,它是用于营养和营养应用的多生产能来源的重要来源。目前的调查是关于从三种绿色海洋藻类Ulva Conglobata,Caulerpa racemosa和Bryopsis plumosa的三种生物化学成分进行的,该研究是从印度古吉拉特邦Veraval Chowpati海岸收集的。使用UV-分光光度计分析生化成分,以评估其食物价值并在研究期间找出组成的变化。bryopsis plumosa中的还原糖,脯氨酸和淀粉含量很高,随后是Caule RPA Racemosa和Ulva Conglobata。脯氨酸含量高于三种藻类物种的总氨基酸。lowry方法之后的蛋白质含量caulerpa racemosa的含量很高,1667.32±18.42(µGG-1干wt。)接着是bryopsis plumosa 1394.98±18.78(µGG-1干wt。)和Ulva Conglobata 292.72±17.85(µGG-1干wt。)。在Bryopsis Plusmosa和Caulerpa racemosa中,蛋白质含量的记录最大,而不是在Ulva Conglobata中。目前的工作中进行的所有测定法都表明,所有选定的绿藻都是生化的良好来源。根据所研究藻类的生化组成值,它们有可能成为在食品,饮食和制药行业中具有较高营养价值和使用的成分来源。关键字:生化组成,海洋藻类,蛋白质含量。
生活的来源。细胞的化学组成。从世界加速到细胞世界的通道。通用共享(Luca)。氧光合物。微生物的发现。<2> van Leuwenhoek。显微镜技术人员。。这一代人,弗朗西斯和路易斯·巴斯特。罗伯特·科赫(Robert Koch)。M.W.北京和S. Wingruf。代谢。<2>微生物的营养分类。自身萎缩,杂交,趋化性和光营养。Procasy细胞。forma和细胞的大小。细胞膜:研究,组成和功能。<潜水>细胞。阳性和负克之间的差异。单击拱门。<2> S. S.内部兄弟细胞的兄弟:核苷,包含兵,gassoes,外观海峡:章节和粘液。鞭毛,比尔和比尔。locanism机制。Motity将标志带动。滑动的移动性。趋化和其他税收。调整。Susone;游戏;令人不安的。<2>细胞奶油蛋白酶。世代的青少年。组。微生物生长:总数,有益,动态性。<2>微生物生长结合:Physic Mezi,Carore(Acuplaves),辐射,门膜,化学剂。环境对生长的影响。symptrofits。温度,pH,渗透性,氧气。环境 - 栖息地。<划分主要的陆生栖息地。表面和生物膜。生物之间的相互作用。 法定人数。 共同主义。 地衣。 rizobi和豆类。 微生物和昆虫之间的共生。 隆隆。 <细菌的神圣多样性。 物种的概念。 系统发育树。 蓝细菌; proteobacteria:Alphaproteoobacteri,beta-专业,gamaprotateobacteri,deltapotateobacteria,epsilonprotateobacteri,zetaptaptateobacteria;肌细菌; Tennericutes;企业;细菌特征;衣原体; plancomycetes; verrucomicrobia; Thermotogae;热硫杆菌; aquificae; Deinococcus-Thermus;酸性杆菌;硝基螺旋体。 <纪念者的多样性。 <考古学家的神圣特征。 euryarcheota; thaumarcheota; Nanoarcheota; Koraecheota; crenarcheota; Lokiarcheota。 真核细胞。 真核细胞的进化,内共生理论;继发性内膜;真核细胞:核,线粒体,氢化体,叶绿体,内质网,高尔基体,溶酶体,过氧化物酶体,细胞骨骼。 植物细胞。 细胞分裂成真核生物。 转向多细胞世界的真核微生物的主要群体。生物之间的相互作用。法定人数。共同主义。地衣。 rizobi和豆类。 微生物和昆虫之间的共生。 隆隆。 <细菌的神圣多样性。 物种的概念。 系统发育树。 蓝细菌; proteobacteria:Alphaproteoobacteri,beta-专业,gamaprotateobacteri,deltapotateobacteria,epsilonprotateobacteri,zetaptaptateobacteria;肌细菌; Tennericutes;企业;细菌特征;衣原体; plancomycetes; verrucomicrobia; Thermotogae;热硫杆菌; aquificae; Deinococcus-Thermus;酸性杆菌;硝基螺旋体。 <纪念者的多样性。 <考古学家的神圣特征。 euryarcheota; thaumarcheota; Nanoarcheota; Koraecheota; crenarcheota; Lokiarcheota。 真核细胞。 真核细胞的进化,内共生理论;继发性内膜;真核细胞:核,线粒体,氢化体,叶绿体,内质网,高尔基体,溶酶体,过氧化物酶体,细胞骨骼。 植物细胞。 细胞分裂成真核生物。 转向多细胞世界的真核微生物的主要群体。地衣。 rizobi和豆类。 微生物和昆虫之间的共生。 隆隆。 <细菌的神圣多样性。 物种的概念。 系统发育树。 蓝细菌; proteobacteria:Alphaproteoobacteri,beta-专业,gamaprotateobacteri,deltapotateobacteria,epsilonprotateobacteri,zetaptaptateobacteria;肌细菌; Tennericutes;企业;细菌特征;衣原体; plancomycetes; verrucomicrobia; Thermotogae;热硫杆菌; aquificae; Deinococcus-Thermus;酸性杆菌;硝基螺旋体。 <纪念者的多样性。 <考古学家的神圣特征。 euryarcheota; thaumarcheota; Nanoarcheota; Koraecheota; crenarcheota; Lokiarcheota。 真核细胞。 真核细胞的进化,内共生理论;继发性内膜;真核细胞:核,线粒体,氢化体,叶绿体,内质网,高尔基体,溶酶体,过氧化物酶体,细胞骨骼。 植物细胞。 细胞分裂成真核生物。 转向多细胞世界的真核微生物的主要群体。地衣。rizobi和豆类。微生物和昆虫之间的共生。隆隆。<细菌的神圣多样性。物种的概念。系统发育树。蓝细菌; proteobacteria:Alphaproteoobacteri,beta-专业,gamaprotateobacteri,deltapotateobacteria,epsilonprotateobacteri,zetaptaptateobacteria;肌细菌; Tennericutes;企业;细菌特征;衣原体; plancomycetes; verrucomicrobia; Thermotogae;热硫杆菌; aquificae; Deinococcus-Thermus;酸性杆菌;硝基螺旋体。<纪念者的多样性。<考古学家的神圣特征。euryarcheota; thaumarcheota; Nanoarcheota; Koraecheota; crenarcheota; Lokiarcheota。真核细胞。真核细胞的进化,内共生理论;继发性内膜;真核细胞:核,线粒体,氢化体,叶绿体,内质网,高尔基体,溶酶体,过氧化物酶体,细胞骨骼。植物细胞。细胞分裂成真核生物。 转向多细胞世界的真核微生物的主要群体。细胞分裂成真核生物。转向多细胞世界的真核微生物的主要群体。转向多细胞世界的真核微生物的主要群体。excavata:外载体,帕拉巴西利亚,运动质体,euglenoidaa;肺泡:Ciliati,Dinoflagellata,Apicomplexa; Heteroconti/stramenopili:Diatomee,Oomycota,Golden藻类,棕色藻类;里扎里亚:氯拉拉赫氏菌科,有孔虫,放射性虫; Amoebozoa;蘑菇:Microsportidia,Chytridiomycota,Mucoromycota,Glomeromycota,ascomycota,basidomycota;古细菌;红藻;绿藻。