基于CRISPR的单细胞转录组筛选是有效的遗传工具,可同时评估由一组指南RNA(GRNA)靶向的细胞的表达式,并从观察到的扰动中推断靶基因函数。然而,由于各种局限性,这种方法在检测弱扰动方面缺乏灵敏度,并且在研究主调节器(例如转录因子)时基本上是可靠的。为了克服检测微妙的GRNA诱导的转录组扰动和对响应最快的细胞进行分类的挑战,我们开发了一种新的监督自动编码器神经网络方法。我们稀疏的监督自动编码器(SSAE)神经网络提供相关特征(基因)和实际扰动细胞的选择。我们将此方法应用于基于基于缺氧的长期非编码RNA(LNCRNA)的子集的基于内部单细胞CRISPR干扰(CRISPRI)转录组筛查(CROCPRI)转录组筛选(CROP-SEQ),该子集受缺氧调节的疾病,该疾病在肺腺癌(Lung adenacoarcinoma)(LUAD)的背景下促进了肿瘤的侵略性和耐药性。针对LNCRNA的子集进行了经过验证的GRNA的农作物序列库,并且作为阳性对照,HIF1A和HIF2A(低氧反应的2个主要转录因子)在3、6或24 h期间在正态氧中培养的A549 LUAD细胞中转导的2个主要转录因子。我们首先通过确定在低氧反应的时间开关期间确定其敲低的特定效应,从而验证了HIF1A和HIF2上的SSAE方法。接下来,SSAE方法能够检测出稳定的短缺氧依赖性转录组特征,该特征是由某些LNCRNA候选者的敲低诱导的,表现优于先前发表的
摘要。疾病进展模型对于理解退行性疾病至关重要。混合效应模型一直用于模拟临床评估或从医学图像中提取的生物标志物,允许在任何时间点进行缺失数据的填补和预测。然而,这种进展模型很少用于整个医学图像。在这项工作中,变分自动编码器与时间线性混合效应模型相结合,以学习数据的潜在表示,使得各个轨迹随时间遵循直线,并以一些可解释的参数为特征。设计了一个蒙特卡罗估计器来迭代优化网络和统计模型。我们将此方法应用于合成数据集,以说明时间依赖性变化与受试者间变异性之间的分离,以及该方法的预测能力。然后,我们将其应用于来自阿尔茨海默病神经影像计划 (ADNI) 的 3D MRI 和 FDG-PET 数据,以恢复大脑结构和代谢改变的详细模式。
美国专利US-6609117-B2和US-6349292-B1,“通过公共网络分配邮资的系统和方法,可以有效地打印邮政指示,并在要邮寄的项目上进行邮寄并进行身份验证,” A.V.Sutherland,M.R。Klugerman,F.M。 d'ippolito,2002和2003。Klugerman,F.M。d'ippolito,2002和2003。
动机:抑制剂 - 激酶结合亲和力的准确预测对于药物发现和医疗应用至关重要,尤其是在治疗诸如癌症之类的疾病中。现有的预测抑制剂 - 激酶亲和力的方法仍然面临挑战,包括数据表达不足,功能提取有限和性能低。尽管通过人工智能(AI)方法(尤其是深度学习技术)取得了进展,但许多当前的方法未能捕获激酶与抑制剂之间的复杂相互作用。因此,有必要开发更先进的方法来解决抑制剂 - 激酶结合预测中的现有问题。结果:这项研究提出了Kinhibhib,这是抑制剂 - 激酶结合亲和力预测指标的新型框架。kinhibit会整合自我监督的预训练的预训练的分子编码器和蛋白质语言模型(ESM-S),以有效提取特征。kinhibit还采用特征融合方法来优化抑制剂和激酶特征的融合。实验结果证明了这种方法的优越性,在三种MAPK信号途径激酶的抑制剂预测任务中,精度达到了92.6%的精度:RAF蛋白激酶(RAF),有丝分裂原激活的蛋白激活蛋白激酶激酶激酶(MEK)和细胞外信号调节激酶(ERK)。此外,该框架在包含200多个激酶的数据集上达到了令人印象深刻的精度。这项研究为药物筛查和生物科学提供了有希望的有效的工具。
动机:抑制剂 - 激酶结合亲和力的准确预测对于药物发现和医疗应用至关重要,尤其是在治疗诸如癌症之类的疾病中。现有的预测抑制剂 - 激酶亲和力的方法仍然面临挑战,包括数据表达不足,功能提取有限和性能低。尽管通过人工智能(AI)方法(尤其是深度学习技术)取得了进展,但许多当前的方法未能捕获激酶与抑制剂之间的复杂相互作用。因此,有必要开发更先进的方法来解决抑制剂 - 激酶结合预测中的现有问题。结果:这项研究提出了Kinhibhib,这是抑制剂 - 激酶结合亲和力预测指标的新型框架。kinhibit会整合自我监督的预训练的预训练的分子编码器和蛋白质语言模型(ESM-S),以有效提取特征。kinhibit还采用特征融合方法来优化抑制剂和激酶特征的融合。实验结果证明了这种方法的优越性,在三种MAPK信号途径激酶的抑制剂预测任务中,精度达到了92.6%的精度:RAF蛋白激酶(RAF),有丝分裂原激活的蛋白激活蛋白激酶激酶激酶(MEK)和细胞外信号调节激酶(ERK)。此外,该框架在包含200多个激酶的数据集上达到了令人印象深刻的精度。这项研究为药物筛查和生物科学提供了有希望的有效的工具。
摘要 - 该纸张利用机器学习算法来预测和分析财务时间序列。该过程始于一个deno的自动编码器,以从主合同价格数据中滤除随机噪声波动。然后,一维卷积会降低过滤数据的维度并提取关键信息。被过滤和降低的价格数据被馈送到GAN网络中,其输出作为完全连接的网络的输入。通过交叉验证,训练了模型以捕获价格波动之前的功能。该模型预测了实时价格序列的重大价格变化的可能性和方向,将交易置于高预测准确性的时刻。经验结果表明,使用自动编码器和卷积来过滤和DENOSIS财务数据,结合gan,实现一定程度的预测性能,验证了机器学习算法的能力,以发现财务序列中的基本模式。
摘要近年来,多室模型被广泛用于尝试从扩散磁共振成像 (dMRI) 数据中表征脑组织微观结构。这种方法的主要缺点之一是需要先验决定微观结构特征的数量,并将其嵌入模型定义中。然而,在给定采集方案的情况下可以从 dMRI 数据中获得的微观结构特征数量仍然不清楚。在这项工作中,我们旨在使用自动编码器神经网络结合旋转不变特征来表征脑组织。通过改变自动编码器潜在空间中的神经元数量,我们可以有效地控制从数据中获得的微观结构特征的数量。通过将自动编码器重建误差绘制到特征数量,我们能够找到数据保真度和微观结构特征数量之间的最佳权衡。我们的结果显示了该数字如何受到壳层数量和用于采样 dMRI 信号的 b 值的影响。我们还展示了我们的技术如何为更丰富地表征体内脑组织微观结构铺平道路。
图 E 1 用于预测 MEG 活动的深度循环编码器 (DRE) 模型的表示。被掩蔽的 MEG pt ⊙ xt 从底部进入网络,连同控制表示 ut 和主题嵌入 s 。编码器使用卷积和 ReLU 非线性转换输入。然后,LSTM 对隐藏状态序列 ht 进行建模,并将其转换回 MEG 活动估计 ˆ xt 。Conv 1 d ( C in , C out , K, S ) 表示随时间进行的卷积,其中输入通道为 C in,输出通道为 C out,内核大小为 K,步幅为 S。类似地,ConvTransposed 1 d ( C in , C out , K, S ) 表示随时间进行的转置卷积。
最近的工作表明,稀疏的自动编码器(SAE)能够有效地发现语言模型中的人解释功能,从玩具模型到最先进的大语言模型等等。这项工作探讨了SAE的使用是否可以推广到机器学习的其他品种,特定的,加固学习,以及如何(如果有的话)将SAES适应这一实质上不同的任务所需的修改。本研究使用玩具加强学习环境来进行经验实验,研究了SAE代表强化学习模型作为可解释特征的能力的定性和定量度量。发现SAE成功地将深Q网络的内部激活分解为可解释的特征,此外,这些人解释的某些特征代表了对仅凭深度Q网络单独输出而无法发现的基本任务的内部理解。
在Domino,我们了解产品编码和标记不仅仅包括打印机,这就是为什么我们与客户合作开发适合其生产要求的端到端解决方案的原因。我们要照顾整个过程,包括整个编码系统一生中的测试,培训,安装和支持。为了满足现代制造环境的需求,我们的编码解决方案可以包括完整代码和检查解决方案所需的一切:编码自动化,视觉控制以及远程监视和诊断,有助于确保仅编码完美的产品进入供应链。