深度神经网络是生物医学图像分割的有力工具。这些模型通常经过严格监督训练,依赖于图像对和相应的体素级标签。然而,在大量情况下获得解剖区域的分割成本可能非常高。因此,迫切需要基于深度学习的分割工具,这些工具不需要严格监督并且可以不断适应。在本文中,我们提出了一种将分割视为离散表示学习问题的新视角,并提出了一种灵活且自适应的变分自动编码器分割策略。我们的方法称为分割自动编码器 (SAE),它利用所有可用的未标记扫描,并且仅需要分割先验,它可以是单个未配对的分割图像。在实验中,我们将 SAE 应用于脑部 MRI 扫描。我们的结果表明,SAE 可以产生高质量的分割,尤其是当先验良好时。我们证明马尔可夫随机场先验可以产生比空间独立先验更好的结果。我们的代码可在 https://github.com/evanmy/sae 免费获取。关键词:图像分割、变分自动编码器
抗干扰措施 使用高度复杂的微电子器件需要始终实施抗干扰和布线概念。现代机器的结构越紧凑,对性能的要求越高,这一点就变得越重要。以下安装说明和建议适用于“正常工业环境”。没有一种解决方案适合所有干扰环境。当采用以下措施时,编码器应处于完美的工作状态: • 在串行线的开始和结束处(例如,控制和最后一个编码器)用 120 电阻器(接收/发送和接收/发送之间)终止串行线。 • 编码器的接线应远离可能造成干扰的电源线。 • 屏蔽电缆横截面积至少为 4 mm²。 • 电缆横截面积至少为 0.14 mm²。 • 屏蔽和 0 V 的接线应尽可能呈放射状排列。 • 不要扭结或卡住电缆。
抗干扰措施 使用高度复杂的微电子器件需要始终实施抗干扰和布线概念。现代机器的结构越紧凑,对性能的要求越高,这一点就变得越重要。以下安装说明和建议适用于“正常工业环境”。没有一种解决方案适合所有干扰环境。当采用以下措施时,编码器应处于完美的工作状态: • 在串行线的开始和结束处(例如,控制和最后一个编码器)用 120 电阻器(接收/发送和接收/发送之间)终止串行线。 • 编码器的接线应远离可能造成干扰的电源线。 • 屏蔽电缆横截面积至少为 4 mm²。 • 电缆横截面积至少为 0.14 mm²。 • 屏蔽和 0 V 的接线应尽可能呈放射状排列。 • 不要扭结或卡住电缆。 • 遵守数据表中给出的最小弯曲半径,并避免拉伸和剪切载荷。操作说明
对药物治疗的患者特定反应的准确,可靠的预测对于药物开发和个性化医学至关重要。但是,患者数据通常太稀缺了,无法训练广义的机器学习模型。尽管已经开发了许多方法来利用细胞系数据,但由于数据分布变化和混杂因素,很少有它们可以可靠地预测患者对新药的临床反应。我们开发了一种新颖的上下文感知的反面自动编码器(Code-AE),该自动编码器(Code-AE)可以提取通过上下文特定模式和混杂因素掩盖的常见生物学信号。广泛的研究表明,代码可以有效地减轻模型泛化的分布外问题,显着提高了对最先进方法的准确性和鲁棒性,这两种方法都可以预测患者特异性的体内和体内药物反应纯粹是从体外筛查中,并且是从体外筛查中的,并且是从体外筛查中的,并脱离了本质上的生物学因素。使用Code-AE筛选了9,808例癌症患者的50种药物,并发现了新型的个性化抗癌疗法和药物反应生物标志物。
反干扰测量高度复杂的微电子的使用需要一贯实施的反干扰和布线概念。这变得越重要,建筑物的紧凑程度就越大,对现代机器性能的需求越高。以下安装说明和建议适用于“普通工业环境”。对于所有干扰环境,没有理想的解决方案。应用以下措施时,编码器应处于完美的工作状态:•在串行线的开始和结束时,串行线终止了串行线(在接收/传输和接收/传输之间)(例如,控件和最后一个编码器)。•编码器的接线应与能量线的距离很大,这可能会引起干扰。•屏幕的电缆横截面至少4mm²。•电缆横截面至少0,14mm²。•屏幕的接线和0 V的接线应在可能的情况下径向排列。•请勿扭结或堵塞电缆。•遵守数据表中给出的最小弯曲半径,并避免拉伸和剪切负荷。操作说明由Pepperl+Fuchs制造的每个编码器都使工厂处于完美状态。为了确保这种质量以及无故的操作,必须考虑以下规范:•避免对外壳,尤其是对编码器轴以及编码器轴的轴向和径向超负荷的影响。•任何接线工作都必须在死亡情况下使用系统进行。•只有使用合适的耦合,才能保证编码器的准确性和使用寿命。•必须同时打开和关闭编码器和后续设备的操作电压(例如,控制设备)。•不得超过最大工作电压。这些设备必须以超低安全电压操作。关于将电筛查免疫与植物干扰的免疫力有关的注释取决于正确的筛选。在此字段中,安装故障经常发生。通常仅将屏幕应用于一侧,然后用电线将其焊接到接地端子上,这是LF工程中的有效过程。但是,如果有EMC,则适用HF工程规则。HF工程中的一个基本目标是将HF能量以尽可能低的阻抗传递到地球,以其他方式将能量放入电缆中。通过与金属表面的大面连接实现了低阻抗。必须观察到以下说明:•如果没有等值电流的风险,则将屏幕涂在大地面上的“普通地球”上。•必须将屏幕通过隔热材料后面,并且必须夹在张力缓解以下的大表面上。•如果电缆连接到螺丝型端子,则必须将张力缓解连接到接地的表面。•如果使用插头,则仅应安装金属化的插头(例如带有金属化外壳的子D插头)。请观察张力缓解与住房的直接连接。
摘要:风险识别和缓解对于在不断变化的供应链管理领域(SCM)中保持韧性和效率至关重要。现代供应网络中固有的复杂性和不确定性通常太复杂了,无法有效解决传统风险管理技术。为了增强供应链管理中的风险检测和管理,本研究探讨了将区块链技术与深度学习混合的混合策略。区块链通过为供应链操作监视提供透明和分散的系统来确保数据完整性和透明度。深度学习可以改善此过程,该过程分析了大量的历史数据和当前数据,以识别模式,预测威胁并提出对策。所提出的系统利用区块链技术的不可侵犯性和深度学习的预测能力来应对诸如欺诈检测,需求预测,供应商评估和中断预测等重要挑战。使用混合自动编码器和基于LSTM的深神经网络可以确保数据集。自动编码器用于降低维度和降低噪声和冗余数据,这些数据将进一步通过基于LSTM的神经网络,以增强基于区块链的交易数据的安全性。
Cheraghian 等人 [ 21 – 23 ] 在零样本 3 维模型分类方 面提出了 3 维点云的零样本学习方法、缓解 3 维零样 本学习中枢纽点问题的方法和基于直推式零样本学 习的 3 维点云分类方法,并将它们封装进一个全新 的零样本 3 维点云方法 [ 24 ] 中。以上方法均是利用已 知类样本的点云表征及其词向量对未知类别进行分 类,开创了零样本 3 维模型分类方法。近年来, CLIP 在零样本图像分类上取得了良好的效果,因此有研 究者将 CLIP 应用到零样本 3 维模型分类方法中, Zhang 等人 [ 25 ] 提出了基于 CLIP 的 3 维点云理解 (Point cloud understanding by CLIP, PointCLIP) 模型, PointCLIP 首先将 3 维点云投影成多个深度图,然 后利用 CLIP 的预训练图像编码器提取深度图特 征,同时将类别名称通过 CLIP 预先训练的文本编 码器提取文本特征。但是 PointCLIP 的性能受到深 度图和图像之间的域差异以及深度分布的多样性限 制。为了解决这一问题,基于图像 - 深度图预训练 CLIP 的点云分类方法 (transfer CLIP to Point cloud classification with image-depth pre-training, CLIP2Point) [ 26 ] 将跨模态学习与模态内学习相结合 训练了一个深度图编码器。在分类时,冻结 CLIP 的图像编码器,使用深度图编码器提取深度图特 征,该方法缓解了深度图和图像间的模型差异。用 于 3 维理解的图像 - 文本 - 点云一致性表征学习方法 (learning Unified representation of Language, Im- age and Point cloud for 3D understanding, ULIP) [ 27 ] 构建了一个图像、文本和点云 3 种模态的 统一嵌入空间,该方法利用大规模图像 - 文本对预 训练的视觉语言模型,并将 3 维点云编码器的特征 空间与预先对齐的视觉 - 文本特征空间对齐,大幅 提高了 3 维模型的识别能力。与之相似的是,基于 提示文本微调的 3 维识别方法 (CLIP Goes 3D, CG3D) [ 28 ] 同样使用 3 元组形式确保同一类别的 3 维模 型特征和图像特征之间以及 3 维模型特征和文本特 征之间存在相似性,从而使点云编码器获得零样本 识别的能力。另外, PointCLIP V2 [ 29 ] 在 Point- CLIP 的基础之上,通过利用更先进的投影算法和 更详细的 3 维模型描述,显着提高了零样本 3 维模型 分类准确率。本文采用语义增强 CLIP 解决图像和文 本的语义鸿沟问题,通过在语义层面为图像和文本 提供更多相似的语义信息,使图像和文本对齐更具有 一致性,从而有效提高 3 维模型的零样本分类性能。 2.2 提示工程
扩散概率模型(DPM)已成为高质量图像生成中的最先进。但是,DPM具有任意的潜在空间,没有可预处或可控的语义。尽管已经进行了重大的研究工作来提高图像样本质量,但使用扩散模型的可控生成几乎没有工作。具体来说,使用DPM的可控制的反事实生成已成为一个不受欢迎的区域。在这项工作中,我们提出了Causaldiffae,这是一种基于扩散的因果表示学习框架,以根据规范的因果模型来实现反事实。我们将高维度编码为与因果相关语义因素相对应的低维表示。我们使用神经结构性因果模型在潜在变量之间建模因果关系,并通过对齐确保其分离。鉴于预先训练的Causaldiffae,我们提出了一种基于DDIM的反事实生成程序,但要进行干预。我们从经验上表明,Causaldif-fae学习了一个分离的潜在空间,并且能够产生高质量的反事实图像。
I would like to thank all the past and present members of the PSI lab and the Machine Learning group at U of T, especially Babak Alipanahi, Andrew Delong, Christopher Srinivasa, Jimmy Ba, Hannes Bretschneider, Alice Gao, Hui Xiong, Leo Lee, Michael Leung, and Oren Kraus for sharing ideas and collaborating with me.在我的博士学位期间,我在Google上做了两次Intenrship,这对我来说都是一次很棒的学习经历。我要感谢Google Brain Team和Google DeepMind团队的所有成员,尤其是Oriol Vinyals,Jon Shlens,Navdeep Jaitly,Ian Goodfellow,Ilya Sutskever,Timothy Lillicrap,Ali Eslicrap,Ali Eslami,Sam Bowman,Sam Sam Bowman和Jon Gauthier。我特别要感谢Alireza Moghaddamjoo和Hamid Sheikhzadeh Nadjar启发我在伊朗阿米尔卡比尔技术大学的本科生期间从事学术研究并与我合作。我很高兴与许多好朋友一起度过博士学位。尤其要感谢Sadegh Jalali,Aynaz Vatankhah,Masoud Barekatain,Amin Heidari,Weria Havary-Nassab,David Jorjani,Parisa Zareapour,Ehsan Shojaei,Siavash Fazeli和Mohammad norououzi。我借此机会特别感谢Nasrin Tehrani和Hamid Emami。,由于过去几年的持续支持,我在加拿大感到家。当然,我最深切的感激和爱属于我的父母,纳斯林和哈桑,