摘要 - 随着多模式融合技术的快速发展,病理图像与基因组学数据的整合已在癌症生存预测中取得了令人鼓舞的结果。但是,大多数现有的多模型模型不是通过结合病理学和基因组学模态来预训练的,而忽略了不同模态之间固有的任务无关联的关联。尽管某些自我监督的方法通过预训练的目标(例如相关性和均方误差)来对齐多模式信息,但它们缺乏深入的多模式相互作用。为了解决这些问题,我们提出了Contramae,这是一种对比度对齐的掩盖自动编码器框架,以融合病理学图像和基因组学数据,以进行癌症存活预测。具体而言,我们引入了一个对比目标,以使多形态保持一致并构建其内在的一致性。此外,我们设计了两个重建目标,以通过互补偿双方所缺乏的信息来捕获多模式之间的复杂关系。在生存预测中,将Contramae编码器的病理和基因组学编码串联为产生生存风险评分的最终表示。实验结果表明,在五个癌症基因组图集(TCGA)中,CONTORAMA的表现优于五个癌症数据集的现有最新方法。该代码可从https://github.com/suixuewang/contramae获得。
1 香港大学计算机科学系 QICI 量子信息与计算计划,香港薄扶林道。2 香港大学计算机科学系人工智能技术实验室,香港薄扶林道。3 北京大学前沿计算研究中心。4 北京大学计算机学院。5 麻省理工学院理论物理中心。6 牛津大学计算机科学系,英国牛津帕克斯路 OX1 3QD。7 圆周理论物理研究所,加拿大安大略省滑铁卢 N2L 2Y5 Caroline Street North 31 号。8 香港大学深圳科研创新研究院,中国深圳市南山区月星二路。9 浙江大学计算机科学与技术学院,中国。
swath(1.4 km)。此外,凭借其太阳同步轨道,Cloudsat在同一当地时间经过赤道,将观察结果限制为在一天中的特定时间内“快照”。相比之下,成像仪器在更广泛的视野和更高的时间分辨率上进行测量,但它们仅提供“自上而下”的视角,并且不会直接测量大气曲线。但是,将不同光谱通道中的图像与大气轮廓重叠的测量结合在一起,可以推断雷达轨道以外的垂直轮廓。Barker等。[3,4]通过强度像素匹配,开发了一种将地球保健曲线扩展到3D的算法。最近的工作[5,6,7]使用了基于ML的方法(例如U-NET,CGAN,线性回归,随机森林,XGBoost),以从“自上而下”的测量中估算垂直云信息。特别是Brüning等人。[5]从MeteoSat第二代(MSG)旋转增强的可见和红外成像仪(Seviri)的卫星图像进行了训练,并具有Cloudsat Cloud Cloud Radar(CPR)反射率,重建3D云结构。对于所有方法,模型训练需要数据源之间的精确空间和时间对齐。由于雷达卫星的立交桥有限(图1b),轮廓测量值少于可用的图像(为了进行比较,MSG/Seviri每年产生40 TB的图像数据,而CPR每年产生150 GB)。然后,我们使用匹配的图像profile对进行了3D云重建任务的预训练模型。自我监督学习(SSL)的最新进展(SSL)在大型未标记数据集的训练前模型中表现出了希望,但它们在云研究中的应用仍然不足。在这项工作中,我们将SSL方法(MAE,MAE,[8])和GeoSpatemance Authewawe AutoCododers(基于Satmae,[9])应用于2010年的多光谱MSG/SEVIRI数据。我们的结果表明,预训练始终提高此任务的性能,尤其是在热带对流带等复杂地区。具有地理空间意识的预训练模型(即时间和坐标编码),尤其是胜过随机初始化的网络和更简单的U-NET体系结构,从而改善了重建结果。该代码将在接受后提供。
如图 1 所示,感知脑解码 (PBD) 是一种利用不同刺激引起的大脑反应来辨别原始感知刺激(例如视觉或听觉线索)或其某些特征的方法。通常,PBD 在认知和临床两个方面都具有优势。通过 PBD,可以仔细研究与外部刺激相对应的不同大脑活动模式。在临床环境中,大脑解码技术可以用于与患有闭锁综合症或瘫痪等疾病(这些疾病可能会损害运动和发声功能)的个体进行交流。在这种情况下,可以尝试在提供感知刺激的同时重建个体的反应或想象。此外,改进的感知脑解码方法可以用于记忆检索或可视化思维等应用,从而有助于认知研究和康复工作。
本文提出了一个有效的轻量级深空自动编码器(SRAE)模型,以检测视频监视系统中的异常事件。在时间至关重要的实时情况下,轻量级网络至关重要。此外,它可以部署在嵌入式系统或移动设备等低资源设备上。这使其成为现实情况可能缺乏资源的现实情况的方便选择。所提出的网络包括一个三层残留的编码器架构,该架构采用来获取视频中正常事件的显着空间特征。然后,重建损失被用于发现异常情况,其中正常框架的重建良好而重建损失较低,而异常的帧被发现相反。该模型的效率由两个基准数据集测试,加利福尼亚大学圣地亚哥大学(UCSD)行人2(PED 2)和CUHK Avenue,分别为两个数据集实现了AUC≈95%和81%。因此,其性能被证明与最先进的模型相媲美。
反干扰测量高度复杂的微电子的使用需要一贯实施的反干扰和布线概念。这变得越重要,建筑物的紧凑程度就越大,对现代机器性能的需求越高。以下安装说明和建议适用于“普通工业环境”。对于所有干扰环境,没有理想的解决方案。应用以下措施时,编码器应处于完美的工作状态:•在串行线的开始和结束时,串行线终止了串行线(在接收/传输和接收/传输之间)(例如,控件和最后一个编码器)。•编码器的接线应与能量线的距离很大,这可能会引起干扰。•屏幕的电缆横截面至少4mm²。•电缆横截面至少0,14mm²。•屏幕的接线和0 V的接线应在可能的情况下径向排列。•请勿扭结或堵塞电缆。•遵守数据表中给出的最小弯曲半径,并避免拉伸和剪切负荷。操作说明由Pepperl+Fuchs制造的每个编码器都使工厂处于完美状态。为了确保这种质量以及无故的操作,必须考虑以下规范:•避免对外壳,尤其是对编码器轴以及编码器轴的轴向和径向超负荷的影响。•任何接线工作都必须在死亡情况下使用系统进行。•只有使用合适的耦合,才能保证编码器的准确性和使用寿命。•必须同时打开和关闭编码器和后续设备的操作电压(例如,控制设备)。•不得超过最大工作电压。这些设备必须以超低安全电压操作。关于将电筛查免疫与植物干扰的免疫力有关的注释取决于正确的筛选。在此字段中,安装故障经常发生。通常仅将屏幕应用于一侧,然后用电线将其焊接到接地端子上,这是LF工程中的有效过程。但是,如果有EMC,则适用HF工程规则。HF工程中的一个基本目标是将HF能量以尽可能低的阻抗传递到地球,以其他方式将能量放入电缆中。通过与金属表面的大面连接实现了低阻抗。必须观察到以下说明:•如果没有等值电流的风险,则将屏幕涂在大地面上的“普通地球”上。•必须将屏幕通过隔热材料后面,并且必须夹在张力缓解以下的大表面上。•如果电缆连接到螺丝型端子,则必须将张力缓解连接到接地的表面。•如果使用插头,则仅应安装金属化的插头(例如带有金属化外壳的子D插头)。请观察张力缓解与住房的直接连接。
研究微生物组的常见程序是将测序的28个重叠群固定到元基因组组装的基因组中。当前,使用共同含量和基于序列的30个基序(例如四核苷酸频率)是Metagenome 31 binning的最先进的基于共同学习和序列的基于深度学习的方法。从基于对齐的分类得出的分类标签尚未被广泛使用。在这里,我们提出了一种基于半监督的双模式变异自动编码器的元基因组包装工具33,结合了Tetranu-34克利托德频率,与CONTIG共浸没量与CONTIG注释与任何分类分类级的35个分类级返回了35个。taxvamb在CAMI2 Human Microbiome数据集上的所有其他36个BINNER都优于所有其他36个Binner,平均返回40%37个接近完整的组件比下一个最佳BINNER。在实际的长阅读38个数据集上,税收vamb平均恢复了13%的接近完整垃圾箱和14%的39种。在单样本设置中使用时,平均退税量比VAMB高40 83%。taxvamb垃圾箱不完整的基因组比任何其他工具都要好41个,返回255%的高质量垃圾箱42不完整的基因组比下一个最好的binner。我们的方法具有43个研究和工业应用以及方法论新颖性,可以将44个可以通过半监视的多模式45个数据集转化为其他生物学问题。46
在肺动脉高压(PAH)的基因组学基因组学上取得了长足的进步,因为第六次世界上的肺动脉高压座研讨会,在几种新型基因中鉴定了稀有变体,以及赋予PAH风险中等的常见变体。基因和专家小组的变体策划现在为了解要测试哪些基因以及如何解释临床实践中的变体提供了一个强大的框架。我们建议将基因检测提供给有症状的PAH患者的特定亚组,以及患有某些类型的3组肺动脉高压(pH)的儿童。对无症状家庭成员的测试以及在生殖决策中使用遗传学需要参与遗传学专家。现在存在大量具有生物素质的PAH患者,并且已经开始扩展到非组1 pH。但是,这些同类人群主要是欧洲血统。更大的多样性对于表征导致pH风险和治疗反应的全基因组变异的全部程度至关重要。还合并了其他类型的OMIC数据。此外,为了推进基因和途径特异性护理和靶向疗法,基因特异性注册机构对于支持患者及其家人以及为基于遗传知情的临床试验奠定基础至关重要。这将需要患者/家庭,临床医生和研究人员之间的国际宣传和合作。最终,对患者衍生的生物测量,临床和杂音信息以及分析方法的协调将推进这一领域。
• 普通自动编码器和变分自动编码器之间的主要区别在于潜在空间的结构。在 VAE 中,潜在空间是连续且概率性的。这一特性使得 VAE 特别适用于生成建模,因为它们可以通过从潜在空间中学习到的分布中进行采样来生成新的数据点。
摘要:基于模型的强化学习可以有效提高强化学习的样本效率,但是该方法中的环境模型有错误。模型错误可能会误导策略优化,从而导致次优政策。为了提高环境模型的概括能力,现有方法通常使用集合模型或贝叶斯模型来构建环境模型。但是,这些方法在计算密集型和复杂更新。由于生成的模型可以描述环境的随机性质,因此本文提出了一种基于有条件的自动编码器(CVAE)的基于模型的增强学习方法。在本文中,我们使用CVAE来学习与任务相关的表示形式,并应用生成模型来预测环境变化。考虑到多步误差积累的问题,模型适应用于最大程度地减少模拟和真实数据分布之间的差异。此外,该实验证实了所提出的方法可以学习与任务相关的表示并加速政策学习。