。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该预印本版本的版权持有人,该版本发布于2025年2月5日。 https://doi.org/10.1101/2025.02.05.636647 doi:Biorxiv Preprint
嵌段共聚物“呼吸图”模板中的定向自组装,然后进行软水解-缩合:迈向合成仿生二氧化硅硅藻外骨骼的一步 Antoine Aynard, a,b Laurence Pessoni, a,b Laurent Billon a,b * a Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques & de PhysicoChimie pour l'Environnement & les Matériaux, UMR5254, 64000, PAU, France b 仿生材料组:功能与自组装,E2S UPPA, Helioparc, 2 avenue Angot, 64053, PAU, France。 *通讯作者。电子邮件地址:laurent.billon@univ-pau.fr 关键词:自组装、呼吸图、自下而上的过程、溶胶-凝胶、仿生材料摘要
课程目标本课程介绍了量子物质中的多体物理学。由许多颗粒(玻色子或费米子)组成的系统显示出新型的集体现象,例如,单个颗粒没有类似铁磁性和超流量。它旨在介绍这些现象背后的一般原则,例如基本激发,自发对称性破坏,绝热定理,物质的新兴拓扑阶段等。将讨论用于解释实验的解释(例如线性响应理论和响应函数)的理论语言。本课程均针对实验者和理论家。尽管没有官方先决条件,但想参加本课程的学生被认为对量子力学和统计力学有足够的知识。
▪继续通过ICCA组织的CE活动招募会员,宣布给ACCA和其他专业组织成员▪为ICCA成员提供免费/低成本CE活动,以保留当前会员▪提供MHEACA协作会议❖活动和/或倡议:
摘要:分子载体对于受控释放药物和基因以实现所需的治疗结果是必需的。DNA水凝胶可以在此应用中具有独特的序列依赖性程序能力,这可以是对特定货物分子的精确封装,并允许在目标上释放它们的刺激性响应性。然而,DNA水凝胶本质上易受核酸酶降解的敏感,使它们在生理环境中易受伤害。作为有效的分子载体,DNA水凝胶应能够保护包封的货物分子,直到到达目标并释放到目标后。在这里,我们开发了一种控制DNA水凝胶的酶电阻的简单方法,可通过使用阳离子介导的冷凝和膨胀来释放货物保护和释放。我们发现,通过精子凝结的DNA水凝胶对酶促降解具有高度抗性。,如果将钠离子通过干扰精子和DNA之间的相互作用的钠离子扩展到其原始的,无需的状态,它们再次变得可降解。DNA水凝胶的这些可控制的冷凝,膨胀和降解为开发DNA水凝胶作为有效分子载体的发展铺平了道路。关键字:DNA水凝胶,分子载体,刺激反应能力,体积变化,酶抗性■简介
物种和植物名称(附件)基本组成和质量因素质量标准(附件中列出)真实性,添加剂,污染物,卫生,标签,分析和采样方法
散装NB-TA-TI-ZR难治性浓缩合金(RCCA)是通过元素粉末的等准组混合物的定向能量沉积(DED)的加成制造方法制备的。在化学成分的成本和变异性方面,使用元素粉代替预合金粉是有益的。但是,要优化沉积参数更需要。使用扫描速度的变化来研究不同热输入的影响。发现降低的扫描速度有效地减少了微观结构中存在的未溶解的NB/TA颗粒的数量。在沉积过程中采用了预热至500℃的平台,从而在所研究的沉积样品中获得了最佳的微观结构均匀性。最后,进行了1400°C/24 h的均质化退火。尽管对完全TA颗粒溶解的热 - 钙预测,但它们仍然存在于材料中。必须通过优化沉积参数来实现从元素粉末产生的RCCA的合理微结构均匀性,而对于粉末颗粒大小的尺度上的异质性,同质化退火是不可行的。
a. 巴黎萨克雷大学,ENS Paris-Saclay,CNRS,PPSM,91190 Gif-sur-Yvette,法国 b. CNR-NANOTEC – 纳米技术研究所,c/o Campus Ecoteckne,Via Monteroni,73100 Lecce,意大利 c. 考纳斯理工大学聚合物化学与技术系,Radvilenu plentas 19,LT50254 Kaunas,立陶宛 d. 杜伦大学物理系,杜伦 DH1 3LE,英国 * antonio.maggiore@ens-cachan.fr 摘要 光物理特性的控制对于电致发光器件和发光材料的持续发展至关重要。原始分子的制备和研究揭示了高效材料和器件的设计规则。在这里,我们基于热激活延迟荧光发射体中流行的供体-受体设计制备了 7 种新化合物。我们首次引入了苯并呋喃并[3,2-e]-1,2,4-三嗪和苯并噻吩并[3,2-e]-1,2,4-三嗪受体,它们与几种常见的供体相连:吩恶嗪、吩噻嗪、咔唑和 3,6-二叔丁基咔唑。在溶液和固态下进行了 DFT 计算和稳态和时间分辨光物理研究。虽然含有吖嗪部分的衍生物在任何形式下都是非发射性的,但包含 3,6-二叔丁基咔唑的化合物在所有情况下都显示 TADF。更有趣的是,用咔唑供体取代的两种衍生物在分散在聚合物基质中时具有 TADF 活性,在室温下以纯膜(微晶形式)的形式呈现磷光性。