(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年12月12日发布。 https://doi.org/10.1101/2023.01.19.521267 doi:Biorxiv Preprint
摘要疾病媒介的微生物群落可能代表了几种生物学功能的关键特征,因此鉴于气候变化,应特别关注,因此需要制定新颖的控制策略。然而,媒介传播的微生物网络仍然鲜为人知。评估向量的微生物相互作用和气候依赖性可能有助于更好地估计病原体传播特征和公共卫生风险。在全国范围内的气候代表性的调查中,ixodes ricinus tick是从匈牙利的17个地点收集的。使用shot弹枪元基因组测序,通过研究各种气候环境中的若虫和女性之间的关系来分析细菌组的组成。在属水平上的细菌组成显示女性和若虫的样品之间存在显着差异。在核心细菌组中,女性和若虫在以下属中显示出显着差异:arsenophonus,芽孢杆菌,念珠菌中氯酸酯,犀牛,鞘氨虫,鞘氨虫,葡萄球菌,葡萄球菌cus和沃尔巴基亚。发现了以下区分:cur虫,假单胞菌和鞘氨虫。没有女性降水类别有显着差异的属。covtobac terium在若虫中的各种降水水平上显示温度和芽孢杆菌之间的差异显着差异。矢量传播的细菌组成员的组成在具有不同气候条件和tick宿主的发育阶段的采样点显示出显着变化。我们的发现不仅为理解tick传播的细菌网络和相互依赖性铺平了道路,而且还阐明了存在可能存在的生物滴答控制物种的高潜力,tick寄生虫,ixodiphagus hookeri基于相关细菌组的模式。
1 美国德克萨斯州休斯顿德克萨斯大学休斯顿健康科学中心麦戈文医学院麻醉学、重症监护和疼痛医学系,2 中国长沙中南大学湘雅二医院麻醉学系,3 美国德克萨斯州休斯顿德克萨斯大学休斯顿健康科学中心麦戈文医学院急诊医学系,4 比利时鲁汶天主教大学肿瘤学系 VIB 癌症生物学中心血管生成和血管代谢实验室; 5 奥胡斯大学生物医学系血管生成和血管异质性实验室,8000 奥胡斯 C,丹麦 6 哈利法科技大学生物技术中心,阿布扎比,阿拉伯联合酋长国 7 成果研究联盟,克利夫兰,俄亥俄州 联系方式:HKE 电子邮件:holger.eltzschig@uth.tmc.edu 摘要
摘要 我们目前对人类大脑发育的了解主要来自对非人类灵长类动物、绵羊和啮齿动物的实验研究。然而,由于物种差异以及出生前和出生后大脑成熟的变化,这些研究可能无法完全模拟人类大脑发育的所有特征。因此,补充体内动物模型以增加临床前研究与未来潜在的人体试验具有适当相关性的可能性非常重要。三维脑类器官培养技术可以补充体内动物研究,以增强临床前动物研究的可转化性和对脑相关疾病的理解。在这篇综述中,我们重点介绍了使用人类脑类器官开发缺氧缺血 (HI) 脑损伤模型,以补充从动物实验到人类病理生理学的转化。我们还讨论了这些工具的开发如何为研究 HI 相关脑损伤病理生理学的基本方面提供潜在机会,包括男性和女性之间反应的差异。
人类健康是由遗传学(G)和环境(E)决定的。这在暴露于同一环境因素的个体中清楚地说明了这一点。尚未开发出基因 - 环境相互作用(GXE)效应的定量度量,在某些情况下,甚至还没有就该概念达成明确的共识。例如,癌症是否主要来自“运气不好”还是“糟糕的生活方式”。在本文中,我们提供了一组GXE相互作用的示例,作为发病机理的驱动因素。我们强调了epige-netic法规如何代表分子碱基的共同连接方面。我们的论点收敛于GXE记录在细胞表观基因组中的概念,该概念可能代表了解宣告这些多半复杂的调节层的关键。开发一个解码此表观遗传信息的钥匙将提供疾病风险的定量度量。类似于引入估计生物年龄的表观遗传时钟,我们挑衅地提出了“表观遗传评分表”的理论概念,以估计疾病风险。
由于缺乏针对性的治疗方法,三阴性乳腺癌的临床治疗仍然具有挑战性。由于三阴性乳腺癌具有高度缺氧性且HIF-1α的表达高于其他亚型,我们制备了缺氧响应性聚合物胶束,共负载药物和shRNA,通过靶向缺氧肿瘤微环境,随后在缺氧条件下靶向过表达的HIF-1α来治疗三阴性乳腺癌。胶束由甲氧基聚乙二醇(mPEG)和聚-L-赖氨酸(PLL)共聚物组成,以AZO作为mPEG和PLL之间的缺氧响应桥。一旦暴露于缺氧,AZO桥就会断裂,导致胶束解体并快速释放。体外和体内结果表明,通过对缺氧的敏感反应,胶束能够同时将药物和shRNA递送到缺氧部位并实现位点特异性快速释放;缺氧响应性shRNA递送有效沉默HIF-1α及其下游基因,不仅改善缺氧肿瘤对药物的反应,而且调节肿瘤微环境以进一步改善药物和shRNA递送;因此,化疗和HIF-1α靶向基因治疗的协同治疗在小鼠原位TNBC模型中抑制了原发性TNBC肿瘤的生长及其远处转移。缺氧响应性聚合物胶束因其良好的生物相容性而成为一种安全、有效且普遍适用的药物和基因载体,可用于治疗TNBC以及其他缺氧肿瘤。
摘要:缺氧和抑制性肿瘤微环境 (TME) 都是肌层浸润性膀胱癌 (MIBC) 的独立负面预后因素,会导致治疗耐药性。缺氧已被证明可通过募集抑制抗肿瘤 T 细胞反应的髓样细胞来诱导免疫抑制性 TME。最近的转录组分析表明,缺氧会增加膀胱癌中的抑制和抗肿瘤免疫信号和浸润。本研究旨在探讨缺氧诱导因子 (HIF)-1 和 -2、缺氧与 MIBC 中免疫信号和浸润之间的关系。进行 ChIP-seq 以鉴定在 1% 和 0.1% 氧气中培养 24 小时的 MIBC 细胞系 T24 基因组中的 HIF1 α、HIF2 α 和 HIF1 β 结合。使用了在 1%、0.2% 和 0.1% 氧气下培养 24 小时的四种 MIBC 细胞系 (T24、J82、UMUC3 和 HT1376) 的微阵列数据。使用两组膀胱癌队列 (BCON 和 TCGA) 的计算机模拟分析研究了高氧和低氧肿瘤之间的免疫环境差异,并过滤以仅包括 MIBC 病例。将 GO 和 GSEA 与 R 包“limma”和“fgsea”一起使用。使用 ImSig 和 TIMER 算法进行免疫反卷积。所有分析均使用 RStudio。在缺氧条件下,HIF1 α 和 HIF2 α 分别与 ~11.5–13.5% 和 ~4.5–7.5% 的免疫相关基因结合(1–0.1% O 2 )。 HIF1 α 和 HIF2 α 均与与 T 细胞活化和分化信号通路相关的基因结合。HIF1 α 和 HIF2 α 在免疫相关信号传导中具有不同的作用。HIF1 与干扰素产生有关,而 HIF2 与一般细胞因子信号传导以及体液和 Toll 样受体免疫反应有关。中性粒细胞和髓系细胞信号传导在缺氧条件下丰富,同时与 Tregs 和巨噬细胞相关的标志性通路也丰富。高缺氧 MIBC 肿瘤抑制和抗肿瘤免疫基因特征的表达增加,并与免疫浸润增加有关。总体而言,缺氧与抑制和抗肿瘤相关免疫信号传导和免疫浸润的炎症增加有关,如在体外和原位使用 MIBC 患者肿瘤所见。
摘要:缺氧诱导因子 1α (HIF-1 α ) 是一种调节细胞对缺氧反应的转录因子,在所有类型的实体肿瘤中均上调,导致肿瘤血管生成、生长和对治疗的抵抗。肝细胞癌 (HCC) 是一种血管丰富的肿瘤,也是一种缺氧肿瘤,因为与其他器官相比,肝脏处于相对缺氧的环境。经动脉化疗栓塞术 (TACE) 和经动脉栓塞术 (TAE) 是局部区域疗法,是 HCC 治疗指南的一部分,但也会加剧肿瘤缺氧,如肝栓塞后 HIF-1 α 上调所见。缺氧激活前药 (HAP) 是一类新型抗癌剂,在缺氧条件下被选择性激活,可能用于缺氧 HCC 的靶向治疗。针对缺氧的早期研究显示出有希望的结果;然而,还需要进一步研究来了解 HAPs 联合栓塞治疗 HCC 的效果。本综述旨在总结目前关于缺氧和 HIF-1 α 在 HCC 中的作用以及 HAPs 和肝脏栓塞的潜力的知识。
由于其高灵敏度、低毒性、良好的空间和时间分辨率、发射可调、操作简单和非侵入性,它被广泛用于成像。6 用于缺氧成像的荧光探针通常以癌症标志物为目标,特别是与缺氧相关的还原酶。在缺氧肿瘤微环境中,还原酶(如偶氮还原酶和硝基还原酶)过度表达。偶氮基团是对偶氮还原酶敏感的部分,而硝基咪唑是对硝基还原酶敏感的部分。已经开发出各种小分子荧光团用于缺氧条件成像 7 然而,纳米材料由于增强的渗透性和保留 (EPR) 效应而能够实现被动肿瘤积聚和保留。8 这促使人们研究各种用于缺氧成像的纳米材料,9 但非常适合的共价有机框架 (COF) 却被忽视了。由于其纯有机性质、结构和功能可调性、以及可用于药物输送的多孔性,COF 是细胞状况成像的有力候选者。目前仅对少数 COF 进行了生物成像研究,其中细胞成像主要利用材料固有的荧光 10,11 或依靠共轭部分的荧光实现,例如染料标记的核酸 12,13 和荧光探针。14 关于使用 COF 对任何特定细胞状况进行成像的报道更是凤毛麟角。15 在此,我们设计并表征了一种具有硝基还原酶敏感部分的 COF,用于缺氧荧光成像。我们在 b -酮烯胺化学的帮助下合成了一种荧光 COF,16 并在合成后对其进行修饰,以结合硝基咪唑,用于靶向肿瘤缺氧条件下的硝基还原酶。 2-硝基咪唑衍生物是电子缺乏的化合物,已知可作为外源性缺氧标记物,经过生物还原活化后选择性地被缺氧细胞捕获(图 S1,ESI†)。17 由此获得的硝基咪唑 COF(NI-COF)在生理条件下稳定,在中性 pH 和肿瘤组织特有的酸性 pH 水平下均表现出有用的荧光特性,发射峰位于 480 nm(l ex = 420 nm)。利用其低细胞毒性,我们将 NI-COF 用作荧光成像
最近的研究发现,缺氧通过诱导外泌体的分泌有助于肿瘤进展和耐药性。然而,胰腺癌中这种耐药性的基础机制仍有待探索。在这项研究中,我们研究了缺氧诱导的肿瘤衍生外泌体(HEXO)对胰腺癌细胞中吉西他滨的干性和耐药性以及此过程中涉及的分子机制的影响。首先,我们发现缺氧促进了胰腺癌细胞中对吉西他滨的耐药性。其次,我们表明胰腺癌细胞在常氧或低氧条件下分泌的外泌体可以转染到肿瘤细胞中。第三,证明六边形促进了胰腺癌细胞中吉西他滨的增殖,干性和耐药性,并抑制了吉西他滨引起的凋亡和细胞周期停滞。最后,已证实,己糖通过转移外Nyosomal长的非编码RNA调节剂(LNCROR)(LNCROR)的外泌体长期非编码RNA调节剂,使胰腺癌细胞中的河马/与YES相关蛋白(HIPPO/YAP)途径灭活。总而言之,低氧肿瘤微环境可以促进胰腺癌细胞中吉西他滨的耐药性并抗药性。从机械上讲,六边形增强了干性,通过通过河马信号转移LNCROR来促进胰腺癌细胞的化学耐药性。因此,外泌体lncror可以作为胰腺癌化学疗法的候选靶标。
