Liu 等 [36] 在 1950 ℃ 和 50 MPa 压力的 SPS 过 程中,发现随着 TiB 2 的添加量由 5 mol% 增至 30 mol% ,复合陶瓷的硬度降低,断裂韧性增加。 除裂纹偏转和 TiB 2 的钉扎效应使 B 4 C 晶粒细化 ( 从 1.91 μm 减至 1.67 μm) 外,两相间位错的产生, 是 B 4 C 陶瓷增强、增韧的次要原因,其在陶瓷断 裂前吸收能量,造成局部强化 [37–38] 。研究发现, 添加 20 mol% TiB 2 时,复合陶瓷的相对密度为 97.91% ,维氏硬度为 (29.82±0.14) GPa ,断裂韧性 为 (3.70±0.08) MPa·m 1/2 。 3.1.2 Ti 单质引入 与直接添加 TiB 2 相比,在烧结过程中原位反 应生成 TiB 2 可以在较低的烧结温度下获得更高 的密度和更好的机械性能。 Gorle 等 [39] 将 Ti-B( 原 子比 1:2) 混合粉体以 5 wt.% 、 10 wt.% 和 20 wt.% 的比例加入到 B 4 C 粉末中,研磨 4 h 后通过 SPS 在 1400 ℃ 下获得致密的 B 4 C 复合陶瓷。由于 WC 污染,获得了由被 (Ti 0.9 W 0.1 )B 2 和 W 2 B 5 的细颗粒 包裹的 B 4 C 颗粒组成的无孔微结构。当 Ti-B 混合 物的量从 5 wt.% 增至 20 wt.% 时,烧结活化能从 234 kJ·mol −1 降至 155 kJ·mol −1 。含 5 wt.% Ti-B 混 合物的 B 4 C 复合材料的最大硬度为 (3225±218) HV 。由于 TiB 2 的原位形成反应是高 度放热并释放大量能量的自蔓延反应,因此,原 料颗粒界面间的实际温度预计高于 SPS 烧结温 度,同时,液相 W 2 B 5 的形成润湿了 B 4 C 表面, 有助于降低 B 4 C 晶粒的界面能,并加速了沿晶界
与大多数驻地一样,等待时间各不相同。正在进行的维修工作、旺季(8 月至 9 月)等都可能是等待时间的一个因素。从历史上看,平均等待时间少于两周,具体取决于符合条件的单位类型。申请可以在 HSC 提交,也可以在抵达前使用住房早期援助工具 (HEAT) 提交,该工具可在 www.cnic.navy.mil/HEAT 上找到。HEAT 不允许 HSC 将服役人员列入候补名单。如果在抵达后 30 天内提交申请,则该成员在候补名单上的生效日期是从最后一个永久工作地点撤离的日期。
a) MAL-411:解析数论 b) MAL-412:组合理论 c) MAL-413:信用风险建模 d) MAL-414:微分几何 e) MAL-415:算法设计与分析 f) MAL-416:图论 g) MAL-41?:数学图像处理 h) MAL-418:数学建模与仿真 i) MAL-419:数论 j) MAL-420:统计机器学习。k) MAL-511:抽象谐波分析 I) MAL-512:高级复分析 m) MAL-513:高级矩阵理论 n) MAL-514:高级数值分析 0) MAL-515:高级运筹学 p) MAL-5 16:高级偏微分方程 q) MAL-51?:代数数论 r) MAL-518:代数拓扑 s) MAL-519:近似理论 t) MAL-520:编码理论 u) MAL-521:交换代数 v) MAL-522:计算流体动力学 w) MAL-523:控制理论 x) MAL-524:动力系统 y) MAL-525:流体动力学 z) MAL-526:傅里叶分析及应用 aa) MAL-52?:模糊集和模糊系统 bb) MAL-528:双曲守恒定律 cc) MAL-529:积分方程和变分法 dd) MAL-531:数学生物学 ee) MAL-532:数学密码学 ff) MAL-533:测度论 gg) MAL-534:多元技术 hh) MAL-535:数值线性代数 ii) MAL-536:算子理论 jj) MAL-53?:最优控制理论 kk) MAL-538:正交多项式和特殊函数 II) MAL-539:投资组合优化 mm) MAL-540:逆问题的正则化理论 nn) MAL-541:有限群的表示理论 00) MAL-542:半群理论与应用
a. 拟议的两步许可模式。可行性许可阶段将为开发商提供开展严格调查所需的保证,以告知商业许可和环境同意。 b. 高度重视确保有严格的退役规定和相关的金融担保。在制定这些担保时,我们注意到允许开发商在资产使用寿命内建立担保的系统的重要性。 c. 该法案没有重复《1991 年资源管理法》(RMA)和《2012 年专属经济区和大陆架法》(EEZ Act),包括环境相关事项。通过这些其他更具体的框架来处理环境考虑是适当的。 d. 要求潜在开发商在整个过程中与 mana whenua 密切协商。 e. 宣布海上可再生能源基础设施周围安全区的灵活模式。重要的是安全区要适合开发的具体情况。 f. 该制度不包括任何特许权使用费规定。新西兰的海上可再生能源行业仍处于起步阶段。特许权使用费或其他收入收集机制会削弱投资积极性。3. 我们还想强调,如果要实现新西兰的海上风电潜力,还有其他需要关注的有利因素。如果不解决这些其他障碍,该法案的工作就有可能白费。4. 我们支持在 RMA 和 EEZ 法案中采用更一体化的同意途径。《快速通道审批法案》将为此类考虑提供一条途径。然而,考虑到新西兰海上风电的规模和新颖性,为开发商提供快速通道制度之外的有效选择至关重要。这将更好地为申请人和社区提供评估海上风电环境影响的空间。5. 新西兰海洋制度的一个关键差距仍然是如何确定海洋空间的竞争用途。根据该法案,可行性许可证授予持有人申请海上可再生能源基础设施商业许可证的专有权利。然而,似乎有可能在同一区域内允许其他活动(例如海底采矿)进行运营。需要进一步开展工作来提供解决这些冲突的强有力机制。
量子自旋液体和曾经是凝结物理学主体的量子自旋液体,现在在各种Qubits中实现,提供了前所未有的机会,以研究多体量子渗透状态的典型物理学。量子不可避免地会暴露于环境的效果,例如熔融和耗散,据信这会导致多体纠缠。在这里,我们认为,与常见的信念折叠和耗散不同,可以引起量子自旋液体中新型的拓扑作用。我们通过Lindblad主方程方法研究Kitaev旋转液体和感谢您的曲折代码的开放量子系统。通过使用精确的溶液和数值方法,我们显示了通过反应和耗散的Anyon缩合的动态发生,从而导致从初始状态旋转液体到稳态旋转液体的拓扑转换。阐明了lindblad动力学的Anyon冷凝转换的机制。,我们还提供了对Anyon凝结图中Kitaev旋转液体与曲折代码之间的关系。我们的工作建议开放的量子系统是量子旋转液体和任何人的拓扑现象的新场地。
Technology, 2021, 201: 108541.[19] Steinke K, Groo L, Sodano H A. Laser induced graphene for in situ ballistic impact damage and delamination detection in aramid fiber reinforced composites [J].Composites Science and Technology, 2021, 202: 108551.[20] 杜晓云 , 李金宝 , 杨斌 , 等 .芳纶树脂液浸渍协同冷压 光制备高强度间位芳纶纸的研究 [J].中国造纸 , 2024, 43(4): 120 - 129.Du X Y, Li J B, Yang B, et al.Study on preparing high strength meta - aramid paper by aramid resin solution impregnation combined with cold pressing[J].China Pulp & Paper, 2024, 43(4): 120 - 129.[21] 关振虹 , 李丹 , 宋金苓 , 等 .易染间位芳纶的制备及其 性能 [J].纺织学报 , 2023, 44(6): 28 - 32.Guan Z H, Li D, Song J L, et al.Preparation and properties of dyeable meta - aramid fiber[J].Journal of Textile Research, 2023, 44(6): 28 - 32.[22] 朱文豪 , 宋欢 , 丁娉 , 等 .沉析纤维长度对间位芳纶纸 性能的影响 [J].中国造纸 , 2024, 43(1): 109 - 115.
摘要:随着全球变暖和温室效应的加剧,全球对制冷的需求日益增加。但是,传统的制冷方法不仅消耗了很多能量,而且还会产生诸如Co 2和臭氧(O 3)之类的温室气体(O 3),这将导致温室效应的强化,从而导致恶性循环。迫切需要开发一种干净的冷却技术。被动的白天辐射冷却已被证明是一种有效的策略,是以辐射形式转移到冷外层空间的形式的有效策略,并实现冷却的目的而无需消耗能量或使用辅助设备。根据被动日间辐射冷却技术的原理,本文分析了白天辐射冷却膜和涂料的设计思想,并分析和阐述了辐射冷却材料的开发历史和最新研究进度。最后,结合当前在构建冷却和个人热管理方面的应用,该技术的未来开发方向已被验证。关键字:全球变暖;温室效应;白天辐射冷却;发展课程;建筑冷却;个人热管理
赛马场路班加罗尔 – 560 001。8.森林副保护员 奇特拉杜尔加分区 奇特拉杜尔加区 奇特拉杜尔加 - 577 501。……被告(由 SRI。KUMAR MN,CGC 代表 R1 至 R3;SRI。SS MAHENDRA,AGA 代表 R4 至 R8)此诉讼请求根据《印度宪法》第 226 和 227 条提出,祈求 a) 调取记录,最终导致 2021 年 7 月 7 日、2022 年 4 月 27 日和 2022 年 11 月 5 日的通讯,载于附件 A、A1 和 A2 b) 以复审性质发出命令、指示令状撤销第五被告于 2022 年 11 月 5 日在附件 A2 中通过的编号为 KFD.HOFF/A5-1-MNG-12/2022- FC 的通知以及第三被告于 2021 年 7 月 7 日在附件 A 中发布的澄清,该澄清宣布承租人必须提出新的申请,并撤销第四被告于 2022 年 4 月 27 日在附件 A1 中发布的通知,并宣布坚持获得新的法定许可,包括根据《森林(保护)法》第 2 条获得的许可是违反根据印度最高法院于 2015 年 7 月 30 日通过的附件 J 命令,WP No-562/2009 号,附件 J 等。这些请愿书已经过听取和保留,现宣布命令,首席大法官作出如下:
公司法 1956 年,注册办事处位于班加罗尔 560001 伊甸园维塔尔马利亚路 20 号 1 楼 103 室,代表董事为 AJIT SR ……请愿人(由 SRI. SHRIDHAR PRABHU,律师)以及:1. 印度联邦电力和新再生能源部 SHRAM SHAKTI BHAWAN RAFI MARG,新德里 - 110001 秘书 power@nic.in 代表为秘书(电力)。2.卡纳塔克邦能源部 236 号室,2 楼,VIKASA SOUDHA DR BR AMBEDKAR VEEDHI BENGALURU-560001。 prs-energy@karnataka.gov 由其额外首席秘书代表。 3.国家负荷调度中心由卡纳塔克邦电力传输有限公司管理,该公司是根据《2003 年电力法》第 31 条成立的一家关键机构,办事处位于 SLDC, RACECOURSE CROSS ROAD, ANAND RAO CIRCLE, BENGALURU-560009,电子邮箱:ceeldckptcl@yahoo.com,由其总工程师代表。