摘要。这项研究的目的是研究褪黑激素(MT)对锂羊毛山羊(LCG)皮肤纤维细胞中LNCRNA,mRNA和miRNA表达模式的影响。200 ng l -1 mt(MT组)刺激LCG皮肤纤维细胞48小时,并使用对照组(CON组)进行RNA测序(n = 3)。CERNA网络是通过对涂层坑和内吞囊泡的测序数据和透射电子显微镜观察的生物信息学分析来构建的。在这项研究中,结果表明,MT处理显着促进了LCG皮肤细胞的增殖,并增加了涂层坑和囊泡的数量。总共有775个mRNA,57个LNCRNA和10个miRNA具有差异性,如MT组和CON组管理的皮肤纤维细胞的RNA测序所示。研究了CERNA的调节网络,结果表明,肌醇磷酸代谢,CGMP-PKG信号传导途径,内吞作用和其他途径在LCG Cashmere的生长和发展中起着一定作用。此外,关键基因(例如CREB1,PIK3C3,AGAP3,MEF2A,ASAP2,IRAG1,PNISR,PNISR,PIP5K1A,SRSF11,ZRANB2,RBM39和CBL)受CHI-MIR-34C-34C-5P,CHI-MIR-3P和CHI-34C-3P和CHI-34C-5P和CHI-3P和CHI-3P和CHI-3P和CHI-3P。上述mRNA受15个lncrnas的竞争性约束(例如,MSTRG.28630.12,MSTRG.28660.14,MSTRG.28099.7)。以及通过双重荧光素酶和其他实验,进一步确定了PIP5K1A是miR-34c-5p的靶基因。此发现提供了有关褪黑激素促进羊绒生长的分子机制的新见解。
材料体现的碳包括在整个材料生命周期中释放的所有排放,从原材料提取到材料生命的尽头处置。截至2018年,建筑材料制造占全球CO 2排放量的11%。诸如水泥,混凝土,钢和玻璃之类的建筑材料是碳密集型的,最多占建筑物体现碳的50%。一些建筑材料,例如绝缘材料,是建筑物体现碳排放的相对较小的贡献者。隔热材料在建筑材料之间也是独特的,因为其特定目的是通过减少加热和冷却需求来减少建筑物的气候排放。根据美国能源部,供暖和冷却部的说法,约占典型房屋中使用的能源的50%。绝缘建筑物可以将供暖和冷却的能源消耗降低30%。4
在科学预测中迫切需要在全球变化下经济必不可少的森林物种的分布模式变化,大规模的空间建模是至关重要的工具。使用通过地理信息系统(GIS)获得的多样性模式指标和其他数据以及从已发表数据获得的莫拉西种类的空间数据,我们定量研究了中国Moraceae中属的空间多样性模式。结果表明,具有多种物种的斑块的丰富度,多样性指数和总形状指数明显高于单型属的斑块。单型属没有空间多样性,在空间多样性模式中没有分布。Maclura的空间分布最集中,并且是中国羊毛科中最低的分布面积。斑块的数量和总面积最小,而最重要的贴片指数最高。Maclura没有空间多样性。s treblus的斑块丰度最高。streblus的斑块数量最少,分布的总面积,最低的空间分布和较小的总形状指数,表明其浓缩分布。香农多样性指数(SHDI)和辛普森多样性指数(SIDI)的值最高,空间分布是物种较少的属中最多样化的。Streblus的贴片类型的值比其他属的值更大,但是斑块的数量很少,总形状索引较低。这些地区大多数都是山区。streblus主要分布在云南,广西西部,海南和中部的南部和广东南部。温度随升高而降低,为狭窄的属属提供了不同的环境条件。在中国的莫拉西(Moraceae)中,ficus的空间分布是最多样化的,斑块,斑块类型,总形状指数,SHDI和SIDI值的数量最多。五花体的空间多样性可以用作中国羊毛科的保护区。
变化的化学饰面涂在编织的粘稠织物上。这种饰面的目的是避免由于纤维释放菌株和加工过程中引入的压力而引起的纤维和织物收缩引起的收缩,从而提高了其在家庭洗涤过程中的尺寸稳定性。一件用化学处理的织物缝合的男子外套每周穿5次,然后被洗涤。总体上进行了5次家庭洗涤。和在洗涤之前和之后分析了织物。如SEM所观察到的,获得了出色的尺寸稳定性,没有任何物理降解的迹象。这可以通过耐抗洗涤和磨损菌株的纤维涂层的良好粘附来解释。使用ZETA电位测量的物理和化学分析将表明,与多阳离子(聚氨酯的树脂)和聚阴离子(基于多硅氧烷的树脂)混合物的填充将有助于改善涂层粘附,从而耐洗和磨损。
Agresearch拥有羊毛与消费者相关的属性以及创建它的农场系统的世界领先专业知识。我们准备好提供支持下一个Lanaco,keraplast或Woolchemy所需的可靠证据和创新知识,以实现其目标。本文档提供了对Agresearch在整个价值链中的能力的见解,以支持我们的羊毛行业,并开发带来成功和可持续未来的知识和产品。
羊毛是自然碳循环的一部分。通过储存温室气体二氧化碳 (CO 2 ),羊毛可防止储存的气体在服装使用期间导致气候变化。所有这些二氧化碳都会在纤维的整个生命周期中从大气中去除 - 从草在生长过程中使用,到在绵羊身上转化为羊毛,再到羊毛产品的使用阶段 - 直到被处理和生物降解。对于许多羊毛服装来说,这一期限大大延长,因为羊毛被用于各种纺织品或回收利用。
免责声明:除非另有明确约定,本出版物中提及的产品(“产品”)的销售均受亨斯迈国际有限责任公司或其附属公司的一般销售条款和条件的约束。尽管据亨斯迈所知,本出版物中包含的信息和建议在出版之日是准确的,但本出版物中包含的任何内容(除上述有关符合亨斯迈向买方提供的规格的规定外)均不得解释为任何明示或暗示的陈述或保证,包括但不限于任何适销性或针对特定用途的适用性的保证、不侵犯任何知识产权的保证、或有关质量或与先前描述或样品的一致性的保证,买方承担因使用此类信息和建议而产生的任何风险和责任。产品,无论单独使用还是与其他物质结合使用。此处的任何声明或建议均不得解释为关于任何产品是否适合买方或用户的特定用途的陈述或侵犯任何专利或其他知识产权的诱因。买方有责任确定此类信息和建议的适用性以及任何产品是否适合其自身特定用途,并确保其对产品的预期用途不侵犯任何知识产权。产品可能具有或变得具有危险性。买方应从亨斯迈获取材料安全数据表和技术数据表,其中包含有关产品危害和毒性的详细信息,以及产品的正确运输、处理和储存程序,并应遵守与产品的处理、使用、储存、分销和处置以及接触有关的所有适用的政府法律、法规和标准。买方还应采取一切必要措施,充分告知、警告并让可能处理或接触产品的员工、代理、直接和间接客户和承包商了解与产品有关的所有危险以及安全处理、使用、储存、运输和处置和接触产品的正确程序,以及可能处理、运输或储存产品的容器或设备。请注意,产品可能因国家/地区而异。如果您有任何疑问,请联系您当地的亨斯迈代表。亨斯迈是以下组织的成员:
通过人工智能 (AI) 从大规模数字化数据集中提取信息在规模和变化速度上都是前所未有的。新的数据捕获源包括数字成像、GPS 定位和移动、高分辨率生物标记和生物传感器、实时自动捕获市场和环境数据。澳大利亚羊毛行业是评估此类新表型对盈利能力和先进农业系统影响的理想选择。该项目对人工智能(尤其是深度学习)的实用性进行了初步评估,以准确预测图像、生物标记和动物传感器输出的性能结果。我们开发了一种半自动化系统,该系统能够在田间/院子条件下拍摄高分辨率图像并将其链接到动物电子识别 (EID)。该系统还允许半自动记录体重。使用该系统,我们使用 4 个摄像机角度(即正面、顶部和背面)从 4072 只绵羊创建了 1,482,041 幅图像的图像库。所有绵羊在拍摄图像时都称重,并根据面部覆盖(1-5)、颈部皱纹(1-5)和身体皱纹(1-5)进行主观评分,并识别为 EID。使用图像子集,我们将数字信息应用于深度学习分析管道,特别是使用卷积神经网络 (CNN) 分析。使用 Keras (https://keras.rstudio.com) 和 Tensorflow (https://www.tensorflow.org) 开发模型。将数据细分为训练集、评估集和独立测试集,以预测 AI 预测相应表型的能力。使用侧面和顶部摄像头,预测算法可以分别以 86% 和 87% 的准确率预测体重,并且没有偏差。顶部和侧面摄像头的信息相结合,准确率为 89%。对于面部识别,AI 经过训练可以检测每只羊的头部形状和身体形状,只要羊来自相同的训练和测试集,准确率为 99%。使用每只羊的面部和身体图像的随机子集,AI 算法可以以 94% 和 98% 的准确率将匿名面部和身体图像与羊 EID 匹配,当同时使用面部和身体信息时,准确率为 99.7%。但是,当 5 个月后测试同一只羊的图像时,准确率会大大降低(<10%),除非两个时间点的图像都包含在训练数据集中(准确率提高到 90-98%)。使用皱纹评分的全量表(1-5)预测准确率较低,为 38%-58%。这表明,在面部识别的初始训练中,需要从同一只羊那里获取非常大的数据集,并随着时间的推移不断重复,以检测每只羊独特的生物特征。一旦建立了这样的初始训练数据集,面部识别就可以应用于新的人群。对于颈部和身体皱纹,AI 管道能够将动物分配到高皱纹或低皱纹类别,准确率为 73%-90%,具体取决于预测的相机角度和皱纹特征。AI 预测与手动评分的准确率相匹配,高和低皱纹评分的准确率为 98%-99%,扩展的 1-5 级皱纹评分的准确率为 57%-60%。对于面部遮盖评分,在 2 和 3 之间划分的初始分类器显示的结果略好于随机结果。这在很大程度上取决于种群中面部遮盖数据的分布,其中 87% 的动物被分配到中心类别,不到 1% 的动物属于极端类别。这没有为 AI 算法的训练和验证提供任何能力。为了测试 AI 在描述面部遮盖分数方面的实用性,ML 分类器经过训练可以区分面部遮盖分数 2 和 4。当从图像中裁剪出多个区域时,分类器的预测能力得到证明,准确率为 87%。使用更平衡的数据集,其中每个面部遮盖分数都得到同等代表,很可能区分所有 5 个面部遮盖分数。对生物传感器和生物标记技术的范围及其与深度学习 AI 技术相结合时对绵羊产业定义表型的可能效用进行了审查。全球在该领域的投资成果可能会转移到绵羊产业,并将加速数字化数据量的涌现,其中大多数数据都适合人工智能和深度学习管道。在生物传感器领域,动物加速度计和地理定位设备最有前景。在生物标记领域,基因组学被认为具有最大的潜在直接优势,因为样本可以在早期采集,不受生理状态的影响,并且可以从单个样本中为几乎所有性状提供表型和遗传预测值。大规模蛋白质组学(包括免疫学)和代谢组学研究都具有广阔的未来,因为它们与生理(生产/疾病)状态密切相关,并且适合通过人工智能进行大规模分析,并且可能为复杂性状提供低成本的表型分析,尤其是与动物生物传感器结合时。
虽然本数据表中的数值和应用信息是典型值,但它们仅供参考。给出的数值和信息受正常制造变化的影响,可能会随时更改,恕不另行通知。摩根先进材料 - 热陶瓷不保证也不保证产品的适用性,您应寻求建议以确认产品是否适合与摩根先进材料 - 热陶瓷一起使用。