文章 [1] 基于对可逆和不可逆热力学过程之间差异的不太正确的理解。作者 [1] 在文章开头正确地写道,在 1933 年之前,磁场下的超导-正常转变被认为是不可逆的:“当时人们认为磁场中的转变基本上是不可逆的,因为超导体被认为是一种完美导体(在第二章中讨论的意义上),当超导性被破坏时,与场相关的表面电流会衰减,并产生焦耳热”[2]。但在 1933 年发现迈斯纳效应 [3] 之后,所有物理学家都开始将这种转变视为可逆热力学过程 [2]。
拥有液态水地下海洋的冰卫星是太阳系中最有前途的天体生物学目标之一。在这项工作中,我们评估了在前体生命探测任务中部署激光帆技术的可行性。我们研究了前往土卫二和木卫二的此类激光帆任务,因为这两颗卫星发射出的羽流似乎可以进行现场采样。我们的研究表明,千兆瓦激光技术可以将 100 公斤的探测器加速到 ∼30 公里/秒的速度,然后在 1 - 4 年的时间内到达木卫二,在 3 - 6 年的飞行时间内到达土卫二。虽然激光阵列的理想纬度各不相同,但将必要的基础设施放置在靠近南极圈或北极圈的地方可能是土卫二任务在技术上可行的选择。至关重要的是,我们确定与这些卫星的最小相遇速度(约 6 km s −1 )可能接近最佳速度,可通过类似于欧罗巴快船任务上的表面灰尘分析仪的质谱仪来检测羽流中的生物分子构件(例如氨基酸)。总之,太阳系中的冰卫星可能非常适合通过激光帆结构方法进行探索,尤其是在需要低相遇速度和/或多次任务的情况下。
● Clexio 开发了一种技术,可将精确剂量的药物输送到鼻腔的特定位置。该设备体积小、便于携带、使用简便,适合自行给药。该设备可以输送各种配方,并具有所需的喷雾羽流几何形状。● SPRACISE 的第一个原型被开发用于针对鼻腔中的蝶腭孔,以缓解丛集性头痛。目前正在进行 1b 期研究测试● 其他潜在用途:
• 尽可能使用多播:这些结果基于对单播流量的模拟。如果服务器和客户端之间的路径经过 h3 路由器跳数和 h2 交换机跳数,则“单播”视频将消耗 1.5 x n x h3 Mbps 的路由器带宽,加上 1.5 x n x h2 Mbps 的交换机带宽,其中 n 是单播客户端的数量。然而,在多播环境中,单个视频流会根据网络的多播路由器和交换机的要求进行复制,以允许任意数量的客户端订阅多播地址并接收广播。在网络中,多播传输仅消耗单播解决方案带宽的 1/n。
• 头部采用特殊钢锻造而成。|特制锻钢头 |笔头采用特殊钢锻造而成•冲击面和笔身均经过回火处理。|脸上的打击和疼痛变得坚硬|寺庙在冲击基座上,并在羽毛上。• 头部采用静电喷漆。|头部采用静电喷漆处理 |头部采用静电喷漆。• 通过金属楔固定。|用钢楔固定|用金属楔固定。• 涂漆木质手柄。|涂漆硬木手柄 |涂漆木柄
1820 年,汉斯·克里斯蒂安·奥斯特发现导线中流动的电流会产生自己的磁场,当该磁场与第二个磁场相互作用时,就会在导体上产生一个力。该力与导线中流动的电流量、第二个磁场的强度以及受第二个磁场影响的导线长度成正比。力的方向可以通过一种称为右手定则的技术确定。如果您的右手如下图所示配置,其中拇指指向正电流流动的方向,食指指向第二个磁场的通量方向(即从北极流向南极),那么您的中指将指向作用在导线上的力的方向。
目前安装的绝大多数太阳能光伏系统都是并网的,这意味着电流会流到家庭的配电板,然后由家庭的电气设备使用,多余的电力则输出回电网。典型的并网太阳能光伏系统由太阳能电池板本身、将其固定在屋顶或地面上的支架设备、一个或多个将电能转换成更可用的交流电形式的逆变器,以及将经批准的系统连接到家庭和/或电网所需的任何其他电气设备组成。这些“系统平衡”组件在大多数情况下都是加拿大电气规范所要求的,包括适当尺寸的电线、断路装置、接线盒和断路器,以及
摘要:通过对加利福尼亚州蒙特雷湾的概要,高分辨率观测来检查影响浮游植物生态学的物理生物学耦合。海底峡谷和架子上断裂的地形对物理生物学耦合的影响。在第一个案例研究中,在南部的架子水域中观察到底栖底型耦合,那里的浑浊羽流从底部约60 m深到一个深度约10 m的植物浮游植物层的底部。在与浮游植物层的交点处,羽流的沿羽毛尺度范围从底部附近约5 km到约1 km。原位和遥感数据支持蒙特雷峡谷对循环的影响,强迫底栖式 - 彼此耦合。在第二个案例研究中,额定区域和邻近水在北部架子的约20 km 2中迅速进行了调查。前部与直径<1 km的额叶脊/槽结构,表面光滑和额叶结构相关。叶绿素最大层的大小和垂直位置与额叶区域紧密结合。该层被等轴脊和额叶涡流分散,并集中在等轴槽中和沿涡流的外围。通过观察到的表面光滑,测得的水速度以及架子断裂的接近和方向,通过潮流与架子断裂的相互作用产生的内波的影响。展示了地形对蒙特雷湾浮游植物生态学的显着和持续影响。
摘要:局部人为大气 CH 4 源具有高度不确定性,且随时间变化。机载遥测是检测和量化这些排放的有效方法。在活动背景下,通过实时检索,操作员可以协调最活跃区域的多个测量,从而显著提高科学产量。这可以改善单平台和多平台任务的科学成果。我们描述了 2014 年 6 月和 8 月/9 月在加利福尼亚州进行的 NASA/ESA 二氧化碳和甲烷实验 (COMEX) 活动的案例研究。COMEX 是一个多平台活动,用于测量从人为源(包括石油和天然气基础设施)释放的 CH 4 羽流。我们讨论了实时光谱特征检测和测量的原理,并报告了 NASA 下一代机载可见红外光谱仪 (AVIRIS-NG) 的性能。 AVIRIS-NG 成功以 Gb s � 1 的数据速率实时探测到了 CH 4 羽流,并与其他现场和远程仪器协同表征了逃逸性排放。团队利用这些实时 CH 4 探测来协调多个平台的测量,包括机载现场、机载非成像遥感和地面现场仪器。据我们所知,这是首次在机载科学活动中使用实时痕量气体特征检测,预示着未来的许多应用。事后分析表明,匹配的滤波方法可提供噪声等效 (1 � ) 检测灵敏度,1.0 % CH4 柱增强相当于 141 ppm m。