生活的来源。细胞的化学组成。从世界加速到细胞世界的通道。通用共享(Luca)。氧光合物。微生物的发现。<2> van Leuwenhoek。显微镜技术人员。。这一代人,弗朗西斯和路易斯·巴斯特。罗伯特·科赫(Robert Koch)。M.W.北京和S. Wingruf。代谢。<2>微生物的营养分类。自身萎缩,杂交,趋化性和光营养。Procasy细胞。forma和细胞的大小。细胞膜:研究,组成和功能。<潜水>细胞。阳性和负克之间的差异。单击拱门。<2> S. S.内部兄弟细胞的兄弟:核苷,包含兵,gassoes,外观海峡:章节和粘液。鞭毛,比尔和比尔。locanism机制。Motity将标志带动。滑动的移动性。趋化和其他税收。调整。Susone;游戏;令人不安的。<2>细胞奶油蛋白酶。世代的青少年。组。微生物生长:总数,有益,动态性。<2>微生物生长结合:Physic Mezi,Carore(Acuplaves),辐射,门膜,化学剂。环境对生长的影响。symptrofits。温度,pH,渗透性,氧气。环境 - 栖息地。<划分主要的陆生栖息地。表面和生物膜。生物之间的相互作用。 法定人数。 共同主义。 地衣。 rizobi和豆类。 微生物和昆虫之间的共生。 隆隆。 <细菌的神圣多样性。 物种的概念。 系统发育树。 蓝细菌; proteobacteria:Alphaproteoobacteri,beta-专业,gamaprotateobacteri,deltapotateobacteria,epsilonprotateobacteri,zetaptaptateobacteria;肌细菌; Tennericutes;企业;细菌特征;衣原体; plancomycetes; verrucomicrobia; Thermotogae;热硫杆菌; aquificae; Deinococcus-Thermus;酸性杆菌;硝基螺旋体。 <纪念者的多样性。 <考古学家的神圣特征。 euryarcheota; thaumarcheota; Nanoarcheota; Koraecheota; crenarcheota; Lokiarcheota。 真核细胞。 真核细胞的进化,内共生理论;继发性内膜;真核细胞:核,线粒体,氢化体,叶绿体,内质网,高尔基体,溶酶体,过氧化物酶体,细胞骨骼。 植物细胞。 细胞分裂成真核生物。 转向多细胞世界的真核微生物的主要群体。生物之间的相互作用。法定人数。共同主义。地衣。 rizobi和豆类。 微生物和昆虫之间的共生。 隆隆。 <细菌的神圣多样性。 物种的概念。 系统发育树。 蓝细菌; proteobacteria:Alphaproteoobacteri,beta-专业,gamaprotateobacteri,deltapotateobacteria,epsilonprotateobacteri,zetaptaptateobacteria;肌细菌; Tennericutes;企业;细菌特征;衣原体; plancomycetes; verrucomicrobia; Thermotogae;热硫杆菌; aquificae; Deinococcus-Thermus;酸性杆菌;硝基螺旋体。 <纪念者的多样性。 <考古学家的神圣特征。 euryarcheota; thaumarcheota; Nanoarcheota; Koraecheota; crenarcheota; Lokiarcheota。 真核细胞。 真核细胞的进化,内共生理论;继发性内膜;真核细胞:核,线粒体,氢化体,叶绿体,内质网,高尔基体,溶酶体,过氧化物酶体,细胞骨骼。 植物细胞。 细胞分裂成真核生物。 转向多细胞世界的真核微生物的主要群体。地衣。 rizobi和豆类。 微生物和昆虫之间的共生。 隆隆。 <细菌的神圣多样性。 物种的概念。 系统发育树。 蓝细菌; proteobacteria:Alphaproteoobacteri,beta-专业,gamaprotateobacteri,deltapotateobacteria,epsilonprotateobacteri,zetaptaptateobacteria;肌细菌; Tennericutes;企业;细菌特征;衣原体; plancomycetes; verrucomicrobia; Thermotogae;热硫杆菌; aquificae; Deinococcus-Thermus;酸性杆菌;硝基螺旋体。 <纪念者的多样性。 <考古学家的神圣特征。 euryarcheota; thaumarcheota; Nanoarcheota; Koraecheota; crenarcheota; Lokiarcheota。 真核细胞。 真核细胞的进化,内共生理论;继发性内膜;真核细胞:核,线粒体,氢化体,叶绿体,内质网,高尔基体,溶酶体,过氧化物酶体,细胞骨骼。 植物细胞。 细胞分裂成真核生物。 转向多细胞世界的真核微生物的主要群体。地衣。rizobi和豆类。微生物和昆虫之间的共生。隆隆。<细菌的神圣多样性。物种的概念。系统发育树。蓝细菌; proteobacteria:Alphaproteoobacteri,beta-专业,gamaprotateobacteri,deltapotateobacteria,epsilonprotateobacteri,zetaptaptateobacteria;肌细菌; Tennericutes;企业;细菌特征;衣原体; plancomycetes; verrucomicrobia; Thermotogae;热硫杆菌; aquificae; Deinococcus-Thermus;酸性杆菌;硝基螺旋体。<纪念者的多样性。<考古学家的神圣特征。euryarcheota; thaumarcheota; Nanoarcheota; Koraecheota; crenarcheota; Lokiarcheota。真核细胞。真核细胞的进化,内共生理论;继发性内膜;真核细胞:核,线粒体,氢化体,叶绿体,内质网,高尔基体,溶酶体,过氧化物酶体,细胞骨骼。植物细胞。细胞分裂成真核生物。 转向多细胞世界的真核微生物的主要群体。细胞分裂成真核生物。转向多细胞世界的真核微生物的主要群体。转向多细胞世界的真核微生物的主要群体。excavata:外载体,帕拉巴西利亚,运动质体,euglenoidaa;肺泡:Ciliati,Dinoflagellata,Apicomplexa; Heteroconti/stramenopili:Diatomee,Oomycota,Golden藻类,棕色藻类;里扎里亚:氯拉拉赫氏菌科,有孔虫,放射性虫; Amoebozoa;蘑菇:Microsportidia,Chytridiomycota,Mucoromycota,Glomeromycota,ascomycota,basidomycota;古细菌;红藻;绿藻。
摘要:考古陶瓷的最常见科学分析旨在确定原材料来源和/或生产技术。科学家和考古学家广泛使用基于XRF的技术作为出处研究的工具。进行XRF分析后,除了解释和结论外,还经常使用多元分析对结果进行分析。已经在考古陶瓷出处研究中应用了各种多元技术,以揭示不同的原材料来源,识别进口材料或确定不同的生产配方。本研究旨在评估属于在各个史前时期定居在同一地区的三种培养物的陶瓷的出处研究中的多元分析结果。便携式能量分散性X射线荧光光谱法(PEDXRF)用于确定陶瓷材料的元素组成。陶瓷材料以两种不同的方式制备。将陶瓷物体材料磨碎成粉末,均匀化,然后压入片剂中。之后,在合适的地方抛光相同的片段。定量和定性分析在片剂和抛光片上进行。结果既接受无监督和监督的多元分析。基于结果,可以得出结论,即使使用类似的原料进行陶瓷组合,也可以利用使用EDXRF光谱法对精心准备的碎片表面进行定性分析。
今天,超过800名学生填充了学术课程,提供国际知名的建筑,美术,交流,沟通设计,室内设计,纺织品设计和时装设计的学士学位。ivs致力于基于人文工作室的视觉艺术教育模型,该模型坚持认为,制造商立即成为思想家,学习者,读者,作家,批评家和公民。在社会,技术和审美价值的快速变化时代,IVS培养了学生作为分析师,评论家和经验塑造的创造力。相信,对公正和宽容社会的文化生产必须利用思想,技术,研究,创新和保存,问题的分析以及对多样化知识的综合,也支持我们的课程。每个部门都有一个独特的角色,并与其他部门密切合作,以便对传统和当代视觉艺术的本质有所了解。通过与多样化的专业艺术家,建筑师,学者,考古学家,艺术史学家和设计师的互动,学生将面临思想,概念发展,直觉以及研究价值在创作过程发展中的重要性。
在 ChatGPT 等创新的推动下,生成式人工智能已获得广泛认可。在考古学领域,生成式人工智能具有巨大潜力,特别是通过引入源自受损或退化物体的 2D 或 3D 渲染来重建文化文物的外观。在本研究中,我们展示并评估了生成对抗网络 (GAN) 的实际应用,利用深度学习的力量,对古罗马硬币进行 2D 图像重建,旨在帮助改善其可视化效果。罗马硬币被选为我们的焦点,因为它们相对丰富,并且可以通过在线存储库和数据集获得。我们的结果表明,增强受损或退化硬币的能力有所提高,使它们更类似于保存更完好的硬币。在某些情况下,生成的硬币与原件几乎没有区别。这项工作的贡献展示了 GAN 在协助文化遗产专家和考古学家重现受损物体外观方面的潜力,从而有助于改善保存不佳的硬币的可视化效果。但是,我们还讨论了在重建中使用 GAN 的局限性。虽然这项工作是针对古钱币量身定制的,但只要有足够的训练数据,GAN 在其他文物中的应用前景广阔。我们讨论了如何应用 GAN 并改善文物重建的外观,我们还提供了本研究中使用的相关数据。
Tekin SUSAM 摘要:无人机 (UAV) 可以为探索考古遗址的建筑提供非常有用的图像数据集。数字表面模型 (DSM) 是一种可以使用摄影测量材料和方法从无人机图像中获取的数据集。本研究的目的首先是获得非常高分辨率的 DSM,其次,对塞巴斯托波利斯考古遗址进行基于地理信息系统 (GIS) 的地形分析。塞巴斯托波利斯古城位于土耳其黑海地区托卡特省的苏卢萨赖区;该遗址属于希腊化/罗马时期。这项研究表明,多旋翼无人机特别适用于需要在考古遗址上空非常低空飞行的应用,并且以这种方式获取的 DSM 对于详细分析考古遗址的地形结构非常有效。关键词:GIS;非常高分辨率 DSM;无人机 1 简介 记录和分析考古遗址及其环境极其重要 [1, 2]。通过使用空中或非空中视角,考古研究中可以实施许多方法。卫星和其他基于空中的数字高程数据集为考古学家提供了非常有价值的信息平台,可用于分析考古区域 [3-6]。这些数据集使研究人员有机会以比众所周知的测量更高的精度对地形表面进行建模
致谢 该项目由英国历史遗产委员会委托,是遗产保护委员会计划的一部分。最初的项目提案和项目设计是通过与多位英国历史遗产委员会工作人员的通信而制定的,他们也在项目过程中提供了帮助,我们非常感谢,其中包括 Paul Jeffery、Mark Dunkley、Martin Newman、Carrie Cowan 和 Joe Flatman。我们还要感谢 HE Heritage Data Management 的 Neil Guiden 和 Matthew Reynolds,以及 HE 遗产保护委员会计划的 Gareth Watkins、Tim Cromack、Kath Buxton 和 Zach Osborne。Fjordr Limited 董事 Antony Firth 和 Tees Archaeology 考古学家(规划)Peter Rowe 执行了该项目并编写了本报告。泰恩威尔档案馆和博物馆航海史管理员 Ian Whitehead 也提供了额外帮助。该项目在很大程度上依赖于众多记录蒂斯河沉船的人员的投入,包括蒂斯考古历史环境记录、HE 国家历史环境记录和 Wrecksite 网站的贡献者。这些贡献对于记录货船和考虑其重要性至关重要;我们想感谢所有这些贡献者多年来的努力。引用:
AASF 陆军航空支援设施 ACHP 历史保护咨询委员会 ACSIM 设施管理助理参谋长 AEDB-EQ 陆军环境数据库 - 环境质量 AR 陆军条例 ARE 陆军环境 ARNG 陆军国民警卫队 ARPA 考古资源保护法 APE 潜在影响区域 CA 综合协议 CFMO 建设和设施管理办公室 CAP 民航巡逻 CRM 文化资源经理 CSMS 联合支援维修厂 CX 分类排除 DA 陆军部 DCA 部门咨询考古学家 DoD 美国国防部 DoDI 国防部指令 DOI 内政部 DSCOPS 作战局运营经理 EA 环境评估 EIS 环境影响声明 EO 行政命令 EPAS 环境绩效评估系统 EQCC 环境质量控制委员会 ESOH 环境安全和职业健康 FGDC 联邦地理数据标准 FMS 现场维修厂 FNSI 无重大影响发现 FY 财政年度 GIS 地理信息系统 HABS 美国历史建筑调查HAER 美国历史工程记录 HAR 夏威夷行政法规 HIDoD 夏威夷州国防部 HIARNG 夏威夷国民警卫队 HRHP 夏威夷历史名胜名录 HRS 夏威夷修订法规 HQDA 陆军部总部 ICRMP 综合文化资源管理计划 IFS 综合设施系统 ISR 安装状态报告 ITAM 综合训练区管理 JAG 军法署 MACOM 陆军主要司令部 MATES 机动区训练设备场地
1 塞浦路斯研究所考古与文化科学技术研究中心 (STARC),尼科西亚,塞浦路斯 d.abate@cyi.ac.cy 2 摄影测量与测绘组,ICube-TRIO 实验室 UMR 7357 INSA 斯特拉斯堡,法国 arnadi.murtiyoso@insa-strasbourg.fr 第二委员会 关键词:捆绑调整、摄像网络、风筝摄影、考古文献、DBAT 摘要:价格实惠且现成的无人机系统 (UAS) 进入商业市场,最近提升了考古学家的测绘能力。硬件解决方案确实得到了更精确的飞行计划软件的支持,从而可以提高 3D 模型在空间分辨率和几何精度方面的可靠性。然而,在过去的几十年里,航空摄影主要是利用安装在风筝、气球和杆子上的成像传感器进行的。尽管这些平台是一种经济实惠且用户友好的解决方案,但它们的使用无法按照有序的数据收集方式收集图像,因此在网络设计中引入了可能妨碍摄影测量重建的因素。本研究旨在通过使用商业软件和 DBAT(阻尼束调整工具箱)重新处理在联合国教科文组织考古遗址 Khirokitia Vouni(塞浦路斯)收集的各种数据集,评估束调整 (BA) 的准确性和摄影测量重建的可靠性。1.介绍
摘要:考古学家经常依靠被动机载光学遥感技术来为(欧洲)景观考古项目提供一些核心数据。尽管这一考古领域经历了许多技术和理论的演变,但主要的航空摄影调查以及不太常见的考古机载侦察方法仍然受到许多固有偏差的影响,这些偏差是由低于标准的采样策略、成本、仪器可用性和后处理问题造成的。本文从景观(考古学)的概念开始,并用它来构建考古机载遥感。在介绍了对已经扭曲的考古人群进行采样时减少偏差的必要性并扩展了航空调查的“理论中立”主张之后,本文提出了八个关键特征,这些特征都有可能增加或减少使用被动传感器收集机载光学图像时的主观性和偏差。在此背景下,本文随后对景观考古学在过去几十年中依赖的各种被动机载光学成像解决方案进行了一些技术方法论反思。在这样做时,它对这些高度主观的方法对景观考古学的有效性和适用性提出了质疑。最后,本文提出了一种新的、更客观的利用被动传感器进行航空光学图像采集的方法。在讨论中,本文认为
学科列表(功能代码) _____________________________________________________________________________________ 代码说明 代码说明 01 声学工程师 32 水利工程师 02 行政 33 水文测量员 03 航空摄影师 34 水文学家 04 航空工程师 35 工业工程师 05 考古学家 36 工业卫生学家 06 建筑师 37 室内设计师 07 生物学家 38 土地测量员 08 CADD 技术员 39 景观建筑师 09 制图师 40 材料工程师 10 化学工程师 41 材料处理工程师 11 化学家 42 机械工程师 12 土木工程师 43 采矿工程师 13 通信工程师 44 海洋学家 14 计算机程序员 45 照片解译员 15 施工检查员 46 摄影测量师 16 施工经理 47 规划师:城市/区域 17 腐蚀工程师 48 项目经理 18成本工程师/估算师 49 遥感专家 19 生态学家 50 风险评估师 20 经济学家 51 安全/职业健康工程师 21 电气工程师 52 卫生工程师 22 电子工程师 53 调度员 23 环境工程师 54 安全专家 24 环境科学家 55 土壤工程师 25 消防工程师 56 规范撰写人 26 法医工程师 57 结构工程师 27 基础/岩土工程师 58 技术员/分析师 28 大地测量员 59 毒理学家 29 地理信息系统专家 60 运输工程师 30 地质学家 61 价值工程师 31 医疗设施规划师 6