摘要:激光消融过程中从目标表面发出的材料会在相反的方向上产生净推力(推进)。这种激光驱动的推进的能量效率由机械耦合系数(𝐶M)给出。在这项工作中,我们考虑了铝6061合金的纳秒紫外线激光消融,以使用不同的辐照条件研究𝐶m行为。这是通过系统变化来完成的:激光束的功能,均匀/非均匀强度和入射角。特别是我们发现,在处理不均匀的激光强度时,专门表征𝐶m,而the则并不完全令人满意,因为辐照区域上的能量分布在消除材料的方式中扮演着键角,在蒸发和相位证明和相位 - 塑性和冲刺之间产生了键作用。
串扰现象是由于两条线路之间的耦合引起的。当线路间隙减小时,耦合系数(β 12 或 β 21)会增加,尤其是在硅片中。在图 13 的示例中,负载 R L2 上的预期信号为 α 2 V G2 ,实际上此时的实际电压有一个额外的值 β 21 V G1 。V G1 信号的这一部分表示线路 1 的串扰现象对线路 2 的影响。当驱动器在干扰线路中施加快速数字数据或高频模拟信号时,必须考虑这种现象。如果受干扰线路使用低压信号或高负载阻抗(几 k Ω),则受干扰线路会受到更大的影响。以下部分给出了数字和模拟串扰的值。
摘要 — 无线电力线圈在植入式医疗设备中具有重要用途,可实现安全可靠的无线电力传输。为每种特定应用设计线圈是一个复杂的过程,涉及许多相互依赖的设计变量;确定每对线圈的最佳设计参数既具有挑战性又耗时。在本文中,我们开发了一种平面方螺旋线圈的自动化设计方法,该方法根据输入的设计要求生成理想的设计参数,以实现最大功率传输效率。首先通过将电感耦合系数 k 与其他设计参数隔离开来降低计算复杂度。然后开发了一个简化但准确的等效电路模型,其中迭代考虑了趋肤效应、邻近效应和寄生电容耦合。所提出的方法在开源软件中实现,该软件考虑了输入的制造限制和特定应用要求。通过有限元法模拟验证了估计的功率传输效率的准确性。使用所提出的方法,线圈设计过程完全自动化,只需几分钟即可完成。
摘要本文研究了“ Li”几何形状拓扑的创新负面群体延迟(NGD)理论。Li-Topology是一个非常简单且完全分布的电路,该电路由耦合线(CL)组成。考虑了CL耦合系数,延迟和衰减的LI S参数模型。NGD分析表明,开发了有关LI拓扑参数的NGD条件的可能性。表达了NGD特征作为NGD值,中心频率,带宽,传输和反射系数。Li-NGD理论通过微带技术实施的两个概念概念证明。计算的模型,模拟和测量值良好。正如预期的,在大约2.56 GHz和0.92 GHz时,Bandpass NGD呈现中心频率,NGD水平约为-0.9 ns和-3.7 ns,大小为li原型。出色的时间域分析,解释了带通道NGD的含义,其创新的衰减输出也呈现。时间域结果突出显示了不违反因果关系的时间及时的脉冲信号信封。
摘要:光学微/纳米图案的高质量制造的可用性为基于光学机械(OM)声音和光的相互作用而开发的可扩展电路和设备的道路铺平了道路。在这项贡献中,我们提出了一项有关OM腔的新研究,可以使其与紧密整合的波导对其耦合进行精确控制,这是增强模式激发和波浪能陷入诱因的必要条件,为波浪指导,滤波,滤波,填料,结合和传感打开了许多潜在应用的可能性。此外,可以避免对笨重的实验设置和/或光纤维耦合/激发的需求。同时,优化了在腔体中共鸣的机械和光学模式的质量因素,以及它们的OM耦合系数:两种激发的高度结合是实现其声音(AO)相互作用的先决条件。为此,腔体的横向大小已被抛物面,具有将腔分离的额外好处和远离耦合区域的集成波导。有限元方法已用于执行全波分析,并提供了有关正确描述光学散射和辐射所需的模拟设置的准确讨论。
铅锆钛酸盐(PZT)是一种广泛用于微电动机电(MEMS)技术的压电材料,主要是由于其强烈的压电和机电耦合系数[1]。然而,由于PT缓冲液的损失,传统上用于生长PZT薄膜[2],因此其在光子综合电路(图片)中的应用受到限制。通过化学溶液沉积(CSD)方法[3],具有透明缓冲层(LA 2 O 2 CO 3)生长的PZT膜[3],并通过Pockel的调节证明了其在光子应用中的潜力[4]。但是,在这种方法中使用的薄缓冲层的自旋涂层需要平面样品表面,从而限制了其范围。微转移打印(µ tp)可能是绕过这种瓶颈的一种方法[5]。在本文中,我们报告了悬挂的长度高达4 mm的悬挂式PZT优惠券,宽度高达120 µm。然后,我们成功传输了SI基板上的PZT优惠券。这些结果证明了一种可以使PZT膜在芯片的所需位置中稳定的,而完整芯片均匀地平面化的技术。此外,此方法可以为各种光子学应用程序设计MEMS执行器提供额外的自由。
hzμm-3(带有自旋型耦合系数,代表主要的系统不确定性)。我们在具有低应变梯度的单晶散装钻石中使用应变敏感的自旋态干涉仪(N- V)颜色中心。这种量子干涉量学技术对磁场对电子和核自旋浴的不均匀性产生了不敏感性,从而实现了长时间的N- V – Angelement Electemple-Electemple-Electemple-Electement Electem-Election旋转时间和增强的应变敏感性,并增强了该技术的潜在应用,并拓宽了相同的技术的潜在应用。我们在共聚焦扫描激光显微镜上首先证明了应变敏感的测量方案,从而提供了敏感性的定量测量以及三维应变图;第二位于宽阔的成像量子钻石显微镜上。我们的应变 - 显微镜技术可以快速,敏感的钻石材料工程和纳米化表征;以及基于钻石的菌株感测所应用的,例如在钻石砧细胞或嵌入式钻石应力传感器中,或内部通过粒子诱导的核后坐力引起的晶体损伤。
摘要。详细分析了使用平面和曲面光子微机电系统镜进行高斯光束的自由空间耦合。分析了理论背景和非理想效应,例如有限的微镜范围、球面微镜曲率不对称、轴未对准和微镜表面不规则。使用推导的公式从理论和实验上研究和比较平面(一维)、圆柱形(二维)和球面(三维)微镜的行为。分析重点关注曲面微镜曲率半径与入射光束瑞利范围相当的尺寸范围,也对应于参考光斑尺寸。考虑到可能的非理想性,推导出基于传输矩阵的场和功率耦合系数,用于一般微光学系统,其中考虑了微系统切向和矢状平面中的不同矩阵参数。结果以归一化量的形式呈现,因此研究结果具有普遍性,可应用于不同情况。此外,还制造了形状可控的硅微镜,并用于实验分析可见光和近红外波长的耦合效率。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 International 许可证出版。分发或复制本作品的全部或部分内容需要完全注明原始出版物,包括其 DOI。[DOI:10.1117/1.JOM.2.3.034001]
具有多个频率的抽象微型超声传感器阵列是内窥镜光声成像(PAI)系统中的关键组件,可实现高空间分辨率和生物医学应用的大型成像深度。在本文中,我们报告了基于陶瓷薄膜PZT的开发,基于PZT的双重和多频压电微机械超声传感器(PMUT)阵列以及其PAI应用的演示。的长度为3.5毫米或直径10 mm,正方形和环形PMUT阵列,含有多达2520 pm的元素,并且用于内窥镜PAI应用,开发了从1 MHz到8 MHz的多个频率。通过晶片键和化学机械抛光(CMP)技术获得厚度为9μm的薄陶瓷PZT,并用作PMUT阵列的压电层,其压电常数D 31的测量高达140 pm/v。从这个高的压电常数中获得的好处,制造的PMUT阵列表现出高机电耦合系数和较大的振动位移。除了电气,机械和声学表征外,还使用嵌入到琼脂幻像中的铅笔导线进行了PAI实验。通过具有不同频率的PMUT元素成功检测到光声信号,并用于重建单一和融合的光声图像,这清楚地证明了使用双频和多频PMUT阵列的优势,以提供具有高空间分辨率的全面光声图像,并同时使用高空间分辨率和较大的信号和较大的信号比率。
人们越来越关注新型磁电 (ME) 材料,这种材料在室温 (RT) 下表现出强大的 ME 耦合,可用于高级存储器、能源、自旋电子学和其他多功能设备应用,利用通过磁场控制极化和/或通过电场控制磁化的能力。获得具有强 ME 耦合的 ME 材料、了解其起源并操纵其加工和成分以实现室温下的大 ME 系数是多铁性研究的重要一步。为了解决这个问题,我们研究了 Ni 掺杂的 Pb(Zr 0.20 Ti 0.80 )O 3 (PZT) 的多铁性和 ME 特性。我们发现 Ni 掺杂 PZT 的铁电(TC ~ 700 K)和弱铁磁(~ 602 K)相变远高于 RT,导致强 ME 耦合系数( E,31)为 11.7 mVcm -1 Oe -1(H ac = 1 Oe 和 f = 1 kHz)。虽然 X 射线衍射表明这是一种单相材料,但高分辨率透射电子显微镜揭示了有和没有 Ni 存在的区域;因此两相之间的磁电耦合是可能的。第一性原理计算表明 (Ni Pb ) × 缺陷可能是造成 Ni 掺杂 PZT 中实验观察到的磁性和 ME 耦合的原因。我们进一步证明 Ni 掺杂 PZT 表现出低损耗角正切、低漏电流、大饱和极化和弱