一维(1D)固体的电导率相对于其长度表现出指数衰减,这是定位现象的众所周知的表现。在这项研究中,我们介绍了将一维半导体插入单模电磁腔所产生的电导率改变,并特别集中在非排定掺杂的状态上。我们的方法采用了绿色的功能技术,适用于对腔体激发状态的非扰动考虑。这包含相干的电子腔效应,例如零点爆发场中的电子运动,以及在隧道过程中的不一致的光子发射过程。跨腔的电子传递的能量谱发育与虚拟光子发射,沿谐振水平的通过以及光子重吸收相关的FANO型共振。FANO共振的质量因素取决于中间状态是否耦合到铅,当该状态深入障碍潜力中时达到最大值。耦合到空腔也提高了浅结合状态的能量,使它们接近传导带的底部。这种作用导致低温下电导率的增强。
以及牙科植入物作为牙科的重建治疗选择的出现,种植植物的感染已成为这种进步的生物工程副产品。植入植入植物周围感染是植入植入物粘膜炎,如果炎症延伸到潜在的骨骼,从而进一步导致骨溶解。种植体周围感染的诊断标准主要依赖于临床和射线照相检查。因此,探测(BOP)出血的临床迹象对于检测粘膜炎形式的植入物周围炎症至关重要。植入植入术的诊断与Crestal骨骼水平的放射学变化相称,尤其是植入物周围的对称“碟形”骨缺损的特征。最新的植入物粘膜炎的病例定义包括BOP或化脓,但除初始重塑以外,没有射线照相术骨损失。与先前的检查相比2018)。总体而言,所有患者中约有三分之一和五分之一的植入物将患有植入术(Kordbacheh Changi等人。 2019)。 耦合到这些的主要风险因素2019)。耦合到这些的主要风险因素
钻石中氮气视口中心的电子自旋通过动态去耦方法来控制近端13 C核自旋的控制,可能与射频驱动结合在一起。已经证明了多Quipitibe寄存器所需的长期寿命单量子状态和高保真电子核门。朝着可扩展体系结构的目标,在光子网络中链接多个此类寄存器是一个重要的步骤。多对远程纠缠量表可以启用高级算法或错误校正协议。我们研究了如何将光子结构从内在的氮旋转扩展到每个节点的多个13 C旋转。依次依次地应用受反折叠的门,我们模拟了创建多对远程纠缠量子的忠诚度。即使目前达到的13 C旋转的控制程度可能不足以大规模设备,但这两个方案原则上是兼容的。一项要求是校正在解耦序列期间未经沉淀的核自旋获得的无条件阶段。
在过去的几十年中,量子技术领域一直在迅速扩展,产生了许多应用,例如量子信息,量子通信和量子网络安全。在这些应用的核心上是量子发射极(QE),这是单个光子或光子对的确切可控的发电机。半导体QE,例如钙钛矿纳米晶体和半导体量子点,作为纯单个光子的发射器表现出很大的希望,当用等离子体型纳米腔杂交时,具有产生光子对的潜力。在这项研究中,我们开发了一个系统,在该系统中,可以以可控的方式与外部等离子跨表面进行交互之前,期间和之后,可以追溯到单个量子发射器及其集合。将外部等离质元面耦合到量化量阵列后,单个QES从单光子发射模式切换到多光子发射模式。值得注意的是,该方法保留了QE的化学结构和组成,使它们可以在与等离子次曲面解耦后恢复至初始状态。这显着扩大了半导体QE在量子技术中的潜在应用。
具有异质整合技术的Hutonic Integrated Ciress(PIC)已成为硅光子学的激烈研究领域。1 - 3)他们将不同的材料技术引入商业硅芯片的潜力为将高性能图片与各种光学功能进行大规模整合开辟了道路,使用常规的硅开机器(SOI)平台实现了具有挑战性的挑战。4 - 6)尤其是,通过直接键合的混合III - V/SOI激光器的杂基整合为电信光源提供了适当的解决方案,用于电信和数据中心应用程序接近1.3和1.55μm波长范围。2,7)通过使用分布式的bragg refector,Ring Resonator和Loop Mirror设备,通过使用分布式的Bragg Remotector和Loop Mirror设备来实现在SOI电路内的这种集成在SOI电路内的这种集成。8 - 12)此外,还报道了Hybrid III - V/SOI环激光器,其中光线从III - V/SOI环激光器耦合到通过方向耦合器耦合到Si Bus-WaveGuide。13 - 16)
在过去的几十年中,量子技术领域一直在迅速扩展,产生了许多应用,例如量子信息,量子通信和量子网络安全。在这些应用的核心上是量子发射极(QE),这是单个光子或光子对的确切可控的发电机。半导体QE,例如钙钛矿纳米晶体和半导体量子点,作为纯单个光子的发射器表现出很大的希望,当用等离子体型纳米腔杂交时,具有产生光子对的潜力。在这项研究中,我们开发了一个系统,在该系统中,可以以可控的方式与外部等离子跨表面进行交互之前,期间和之后,可以追溯到单个量子发射器及其集合。将外部等离质元面耦合到量化量阵列后,单个QES从单光子发射模式切换到多光子发射模式。值得注意的是,该方法保留了QE的化学结构和组成,使它们可以在与等离子次曲面解耦后恢复至初始状态。这显着扩大了半导体QE在量子技术中的潜在应用。
图 1:片上集成环形谐振器装置。(a) 基于 DBR 波导 (WG) 的环形谐振器的艺术方案。单个量子点放置在 WG 的核心内,并从顶部进行光学激发。发射的光子从锥形外耦合器内结构的侧面收集。(b) 半径 R 为 10 µ m 的制造环形谐振器装置的扫描电子显微镜图像。(c) 带有标记层的 DBR WG 横截面。(d)、(f) 模拟的 Purcell 因子与能量的关系,其中外半径为 10 µ m,分别耦合到 0.2 µ m 宽度的总线 WG 以及 0 和 25 nm 的环形总线 WG 间隙。(e)、(g) 分别模拟了 0 和 25 nm 间隙结构中 QD 发射耦合到总线 WG 的效率。 25 nm 间隙环腔的非常高的品质因数 Q 要求将模拟光谱窗口限制在 20 nm。 (h) Purcell 因子与 Q 因子的关系取自图 1(d) 和 (f),揭示了基波 (点划线) 和高阶径向模式 (虚线) 的明显线性依赖性。
传统的金属和N型掺杂的半导体材料是新兴的Epsilon – Near -near -Zero(ENZ)材料,展示了非线性光子应用的巨大潜力。然而,这种材料的一个重要限制是缺乏多功能的ENZ波长调整,因此,对ENZ波长的动态调整仍然是一个技术挑战,从而限制了其潜在应用,例如多频带通信。在此,通过光激发后极性形成/解耦的孔浓度的可逆变化以及可调的enz波长移动,可以观察到PSS膜中的ENZ波长的动态调整,从而可以通过可逆的孔浓度变化来实现PSS膜。关于极性激发超快速动力学的实验研究表明,北极子积累的〜80 fs时间常数,北极子解耦的〜280 fs时间常数,表明在子picosocecond时尺度内的enz波长逆转超快切换的潜力。这些发现表明,P型有机半导体可以用作通过极性激发动态调整ENZ波长的新型平台,这为基于ENZ的非线性光学应用在柔性光电上开辟了新的可能性。
“微架构是一种三路超标量流水线架构。三路超标量意味着,通过使用并行处理技术,处理器平均能够在每个时钟周期解码、调度和完成(退出)三条指令。为了处理这种级别的指令吞吐量,P6 处理器系列使用了支持无序指令执行的解耦 12 级超级流水线。”