2. 他们是否曾出现过严重的过敏反应(过敏性休克):I)服用多种不同药物后,但反应原因不明。这可能意味着他们对聚乙二醇 (PEG) 过敏,或 II)接种疫苗或服用含有聚乙二醇 (PEG) 的药物后,或 III)原因不明。这可能意味着他们对聚乙二醇 (PEG) 过敏?如果是,他们不能接种这种疫苗,可能需要专家建议。与疫苗接种团队交谈。如果不是,请转到下一个问题。
mRNA 疫苗有多种已知副作用,包括心脏炎症和严重过敏性休克。这些可能源于超敏反应,这种反应可由“任何 LNP- mRNA 成分”引起,但最有可能由聚乙二醇化脂质纳米颗粒引发,据科学家称,聚乙二醇化脂质纳米颗粒是“最有可能引起反应的成分”。
在生物基聚酯或聚乙二醇作为生长控制剂的情况下,在温和条件下合成了导电配位聚合物 Ni(tto) 的纳米粒子。使用聚酯时,可以观察到粒子的聚集体,而使用聚乙二醇时则可以获得分散良好的纳米粒子。事实上,当 Ni 2+ /聚乙二醇的重量比为 0.031 时,透射电子显微照片证明分散粒子的尺寸在 3 - 10 nm 范围内。纳米粉末的红外光谱显示 1100 - 1190 cm −1 范围内有两种 CS 拉伸模式,证实了与镍中心配位的四硫代草酸酯配体的存在。在聚乙二醇存在下制备的纳米粉末的室温电导率约为 0.8 S∙cm −1 ,对于四硫代酯基聚合物来说这是一个不错的值。最后,对分散良好的 Ni(tto) 粒子进行磁化率测量,在较大的温度范围内证实了居里-外斯定律。此外,低温测量将证实 Ni(tto) 聚合物链内镍原子之间的链内或链间相互作用。关键词
目的:使用化疗药物对抗癌症伴随着高毒性,因为它们无法区分癌细胞和正常细胞。因此,癌症治疗研究的重点是将药物靶向输送到癌细胞。在这里,我们报告了一项体外研究,研究了叶酸-聚乙二醇-聚琥珀酸丙二醇酯纳米颗粒 (FA-PPSu-PEG-NPs) 作为载体在乳腺癌和宫颈癌细胞系中靶向输送抗癌药物紫杉醇。方法:通过体外药物释放研究和细胞毒性测定对载紫杉醇的 FA-PPSu-PEG-NPs 进行表征。通过活细胞成像监测不同癌细胞系中 NPs 的细胞摄取和内化机制。检查了这些细胞系中叶酸受体-α (FOLR1) 的表达,并通过游离叶酸竞争研究了 FOLR1 介导的 FA-PPSu-PEG-NPs 的特定进入。使用其他内吞途径的抑制剂,还研究了替代的、不依赖 FOLR1 的 NPs 摄取途径。结果:载有紫杉醇的 PPSu-PEG-NPs 的药物释放实验表明,紫杉醇的释放时间延长了数天。在癌细胞系中监测到,载有紫杉醇的 PPSu-PEG-NPs 的细胞毒性与游离药物相似。用游离紫杉醇或载有紫杉醇的 PPSu-PEG-NPs 处理的细胞的活体成像显示微管蛋白特异性细胞周期停滞,动力学相似。叶酸结合的 NPs (FA-PPSu-PEG-NPs) 靶向 FOLR1 受体,如游离叶酸竞争 FA-PPSu-PEG-NPs 细胞摄取所示,在一些测试的细胞系中。然而,由于 FOLR1 在癌细胞系中的表达差异,以及不同细胞类型所使用的不同内吞途径之间的内在差异,也使用了其他纳米粒子进入细胞的机制,揭示了依赖于动力蛋白的内吞作用和大胞饮作用途径至少部分介导 FA-PPSu-PEG NPs 进入细胞。结论:我们的数据证明载紫杉醇的 FA-PPSu-PEG-NPs 可用于靶向递送药物,FA-PPSu-PEG-NPs 可用作其他抗癌药物的载体,并且它们的细胞摄取是通过 FOLR1 受体特异性内吞作用和大胞饮作用的组合介导的。探索不同的细胞摄取机制可以提高治疗效果或减少抗癌药物的剂量。关键词:叶酸-PPSu-PEG 共聚物、纳米粒子、药物输送、紫杉醇、靶向化疗、乳腺癌
对包含两种链长的聚乙二醇化脂质和封装的荧光标记钙黄绿素的脂质体进行了表征,并与非聚乙二醇化囊泡进行了对比。在三种 pH 条件下,对三种脂质体制剂(<200 nm)的体外钙黄绿素释放进行了跟踪,即非聚乙二醇化(pH-Lip)和聚乙二醇化、pH-Lip–PEG750 和 pH-Lip–PEG2000,以证明 pH 响应性。使用流式细胞术和共聚焦显微镜在体外 GL261 胶质母细胞瘤细胞系中测定了脂质体封装标记物的细胞内递送。与 pH-Lip 和 pH-Lip750 相比,在脂质体制剂中加入 PEG2000 导致体外 pH 响应性降低。与非 pH 响应性脂质体相比,所有三种 pH 响应性脂质体制剂均提高了 GL261 细胞内的细胞内摄取,PEG 长度方面的差异可以忽略不计。建议的制剂应在胶质母细胞瘤模型中进一步评估。
脂质体是人工制备的具有脂质双层的囊泡,可用作治疗各种癌症和其他疾病的药物载体分子。传统脂质体由于被网状内皮系统快速摄取而半衰期较短,这导致脂质体浓度和药效降低。脂质体被聚乙二醇包裹后,巨噬细胞对脂质体的摄取减少。这被称为隐形效应,可延长脂质体在循环中的半衰期,从而提高药效。被聚乙二醇包裹的脂质体也称为空间稳定脂质体或隐形脂质体。本综述重点介绍隐形脂质体的特点、制备方法、应用、优点和局限性。
注意:辉瑞-BioNTech 和 Moderna COVID-19 疫苗均含有聚乙二醇 (PEG)。PEG 是渗透性泻药和结肠镜检查口服肠道准备的主要成分,也是许多药物中的非活性成分或赋形剂,用于称为“聚乙二醇化”的过程,以提高某些药物(包括某些化疗药物)的治疗活性。此外,PEG 和聚山梨醇酯(作为赋形剂包含在一些疫苗和其他治疗剂中)之间可能会发生交叉反应性超敏反应。疫苗和药物中活性或非活性成分的信息可在包装说明书中找到。CDC 的疫苗赋形剂摘要和美国国立卫生研究院 DailyMed 数据库也可用作资源。
• 虽然本演讲中讨论的主题可能适用于广泛的生物偶联物,但观点主要涉及抗体-药物偶联物和聚乙二醇化蛋白质,这些是提交给我们部门的最常见药物