这项研究旨在开发一种基于形态学的模型,以预测聚合物与相分离结构的聚合物混合物的模量和拉伸强度。分析模型采用了打结和互连的骨骼结构(KISS)模型的几何方法,结合了不混合聚合物混合物的形态变化和组件的渗透阈值。通过假设各个形态态的特定厚度的薄界面层,可以解释聚合物/聚合物界面对机械性能的影响。使用IPP/PA,PP/PET和LDPE/PP聚合物混合物的实验数据评估了所提出的模型的预测能力,这些数据来自现有文献。结果在预测数据和观察到的数据之间建立了合理的规定。该模型的预测也与已建立的抗拉强度和杨氏混合物混合物模量的模型的预测进行了比较,这表明了其有效性。将界面区域纳入机械性能的建模过程中代表了所提出的模型的关键区别特征,从而增强了其与聚合物混合物的实际微结构的兼容性。此外,该模型对相对简单的数学计算的依赖提出了另一个关键优势。
聚合物也已成为有机热电学的潜在候选物,[7,8]有可能提供柔性,大面积和低成本的能源产生或加热 - 可吸引人的应用,例如,可穿戴能量收获,目前是传统的脆性和通常的毒性或稀有毒性或稀有层次的材料,这些材料目前是不可能的。ther- moelectric材料通过优异ZT = S2σT /κ的无量纲数进行评估,其中S,σ,T和κ分别代表塞贝克系数,电气有效性,绝对温度和热电导率。大多数连接的聚合物的特征是低κ值,从本质上有助于高ZT。通过P型共轭聚合物(例如ZT> 0.25)(PEDOT)(PEDOT)(pEDOT)等最广泛的热电研究证实了这一点。[9,10] P型和N型热电材料的性能应在任何实际应用之前彼此配对。ever,基于N型共轭聚合物的热电设备在功率因数方面仍然远低于其P型对应物(s2σ)。[11,12]因此,有效的发展
3D打印是一个新兴领域,在科学和工业框架中,年复一年地越来越重要。1相关应用涉及从航空航天2、3到生物医学工程4、5通过电子设备,6、7 Mechanics 8-10和许多其他领域。11-13在可能是3D打印的不同材料中,聚合物扮演着重要的角色,聚合物涵盖了市场的最大部分。14 After the development of the first stereolithographi c apparatus (SLA) in the ‘80s, different techniques have been developed, involving the use of polymeric materials in different forms, namely wires or pastes (Fused Deposition Modeling – FDM), powders (Selective Laser Sintering – SLS) or photocurable formulations (SLA and its evolution Digital Light Processing – DLP).这些技术中的每一种都呈现出优势和缺点,正如文献中所报道的那样,尤其是基于光的技术,以最快和最快的
同时,能量结构域中的高分辨率X射线光谱也可以提供对分子系统中超快染色器过程的有用见解。使用单色同步加速器X射线辐射,可以在分子中对特定原子核壳的共振激发。核心兴奋状态的寿命因几个飞秒而异,具有激发能量的相对较浅的核心孔高达1 keV,直到具有较高激发能的深核孔的attosentime量表。通过发射X射线光子或螺旋钻电子的发射在核心激发态的寿命内,可以作为探测分子在同一时间尺度上发生的任何动力学过程的探测。这是“核心时钟”光谱(CHC)的基本概念。6关于
随着高级电子设备和电源系统的快速开发,具有高能量密度和功率密度的能源存储系统变得尤为重要。电源设备的能源存储系统主要包括超级电容器,可充电电池和燃料电池。特别是,新兴的可穿戴电子设备需要灵活且可拉伸的储能设备。聚合物由于其出色的机械强度,柔韧性,耐用性和低成本而广泛用于柔性储能设备中,作为聚合物电极,固态电解质,分离器和导电线。此外,聚合物的机械,电和电化学性能可以通过合适的填充剂在功能上修饰以满足不同的需求。
摘要:软机器人的内在合规性提供了安全性,自然适应其环境,可以吸收冲击并保护它们免受机械影响。然而,一项文献研究表明,用于构造的软聚合物容易受到各种损害的影响,包括疲劳,过载,界面剥离和切割,撕裂和尖锐物体的穿孔。经济和生态解决方案是通过自我修复聚合物构建未来的软机器人系统,并结合了治愈损害的能力。本评论的论文提出了评估自我修复聚合物的潜力的标准,用于软机器人应用。基于这些软机器人的要求以及与机械和愈合特性相关的材料的定义性能参数,对文献中已经可用的不同类型的自我修复聚合物进行了严格评估和比较。除了对自我修复软机器人技术的艺术状态描述外,该论文还讨论了刺激自我修复聚合物科学与软机器人技术之间跨学科组合的驱动力和局限性。引言对可以安全与人类互动的机器人的需求导致了“软机器人技术”领域的出现(1,2)。这个新阶级最近对机器人社区,学术界(3)和行业(4,5)引起了极大的兴趣。在软机器人,身体部位或某些情况下,整个机器人由连续变形的结构组成,在许多情况下,该结构是由弹性聚合物(6、7)制成的,包括硅(8)和聚氨基烷(9)。软体零件具有相对较大的自由度,导致有趣的大规模变形模式(10)。大多数这些柔性设备都是通过可变的长度肌腱(11)驱动的,可以集成张力电缆或形状的存储器合金电缆(12),或者通过形状的存储聚合物(13-15)(13-15),或者它们是通过将其内部流体通道和圆圈放置在压力下(16、17)或在vacuum(18)的情况下驱动的。是由柔性材料制成的,具有固有的合规性,可导致有趣的特征,例如由于冲击吸光度(19、20)和安全性而引起的影响和碰撞的韧性(21,22)。因此,软机器人适合在不确定的,动态的任务环境和安全的人类机器人相互作用中应用(23)。in
摘要。在2010年,弗里曼(Freeman),斯科特(Scott)和特斯克(Teske)出版了一本著名的分类单元,汇编了配对友好型椭圆形曲线的最著名家族。从那时起,研究工作主要从对配对友好曲线的产生转变为算法的改进或对安全插曲的评估,以抵制对离散对数问题的最新攻击。因此,很少有新家庭被发现。然而,在某些新应用中(例如Snarks)中,需要对质量顺序的曲线进行配对曲线,重新激发了对配对友好友好曲线的产生的兴趣,希望能找到类似于Barreeto和Naehrig发现的家庭的兴趣。在Kachisa,Schaefer和Scott的工作中建立了建设,我们表明,环形磁场的二次扩展的某些特定要素会产生与小参数配对曲线的家族。通过在这些元素之间进行详尽的搜索,我们发现了嵌入度k = 20,k = 22和k = 28的曲线的新家族。我们提供了我们技术的开源SageMath实施。我们从新家庭获得加密大小的曲线,并在某些新曲线上提供了概念验证的sagemath实现。关键字:椭圆曲线,基于配对的密码
光代表一种非常通用的刺激,它用于控制变形聚合物中变形的用途可以利用要探索的多个参数(例如波长,功率和极化)来获得区分响应。聚合物,而依赖偏振的控制则可以利用二苯甲苯二异构化。随着由光热效应驱动的形状变化的聚合物在许多应用领域中越来越关注,探索极化以调节其响应可以扩大调谐参数空间并提供对材料光学特性的见识。在这项工作中,我们证明了光极化对少量推扣偶氮苯掺杂的液晶网络的变形。我们演示了如何增强聚合物基质中染料对齐方式如何导致正交极化的不同变形。这些结果证明了极化是一种方便的进一步自由度,除了光刺激的波长和强度。
该特刊强调了3D打印的聚合结构的开发,表征和应用,旨在增强治疗功效,生物传感和个性化医学。聚合物材料的多功能性使研究人员能够创建创新的3D打印设备,例如微针阵列,可植入系统和脚手架,促进受控药物释放,透皮交付和实时健康监测。我们欢迎原始的研究文章,评论和观点涵盖广泛的主题,包括(但不限于)以下内容:用于3D打印,可生物降解和生物措施的新型聚合物材料,功能性涂料,高级制造技术和计算建模。特别鼓励探索3D打印的聚合系统与生物传感平台,微流体和个性化医学的整合的贡献。 通过展示基于聚合物的3D打印用于生物医学应用的最新进步,该特刊旨在提供该领域的全面概述,应对关键挑战,新兴的创新和未来的方向。探索3D打印的聚合系统与生物传感平台,微流体和个性化医学的整合的贡献。通过展示基于聚合物的3D打印用于生物医学应用的最新进步,该特刊旨在提供该领域的全面概述,应对关键挑战,新兴的创新和未来的方向。
本期题为“基于碳的聚合物纳米复合材料:制备,表征和应用,第二版”,旨在形成一系列高质量的原始/评论论文的集合,重点介绍了最新进度和新制剂,并在碳基聚合物纳米复合材料中应用新的准备工作,包括(包括(a)(a)(a)碳材料的合成和表面修饰的碳材料; (b)在聚合物基质中量身定制的碳材料大小,浓度和方向的控制; (c)碳材料与聚合物基质之间的界面性质控制; (d)评估聚合物基质中碳材料的分散状态; (e)以及使用碳基聚合物纳米复合材料和各种纳米复合材料的新应用的开发。