通过活化的单体机制诱导聚合。光酸发生器(PAGS)46对光刻和微电子发育的e;但是,PAG介导的聚合化不是可逆的,仅提供对聚合物启动而不是链生长的时间控制。为了克服这一挑战并发展可逆的光acid,Boyer和De Alaniz独立使用了基于Merocyanine的催化剂。47,48然而,螺旋罗蛋白酶慢慢的热恢复为质子化的丙氨酸限制了这些系统中时间控制的程度。同样,Hecht和Liao都报道了可拍摄的ROP的催化剂,49,50,但在这些系统中也遇到了与催化效率和可逆性有关的局限性。在此基础上,可以通过外部刺激可逆地激活ROP的酸催化剂仍然是一个挑战。我们假设,可以通过设计可逆的,氧化还原控制的酸来实现对酸催化性的阳离子ROP的时间控制,该酸可以通过氧化状态的变化来改变其p k a。51,52特定的cally,通过将铁链接到酸性官能团53,54中,我们设想了一个系统,在该系统中,P k a会在氧化中从Fe(II)到Fe(II)降低,然后通过活化的单体机制启动ROP(图1)。重要的是,将铁金属物种还原回二茂铁将恢复分子的原始酸度并停用催化剂,可消除可逆的终止,从而对聚合进行时间控制。
1旁遮普大学聚合物工程技术系,拉合尔大学54590,旁遮普邦,巴基斯坦2旁遮普邦2学院2个生物医学工程与健康科学学院,工程学院,马来西亚Skudai 81300,马来西亚的Skudai 81300,马来西亚Johor,马来西亚,马来西亚; saifulizwan@utm.my My 3 Biomedical Engineering,MED-X研究所,上海Jiao Tong University(SJTU),1954年,上海华山路,上海200030,200030年,中国4号高级复合材料中心,Malaysia Malaysia Universiti teknologi Malaysia,Skudai 81300,Malaysia Skudai 81300Box 400,Al-Ahsa 31982,沙特阿拉伯; walarjan@kfu.edu.sa(W.S.A.A。 ); seegasami.samina@gmail.com(s.n.) 6机械和制造工程技术学院的可持续且响应迅速的制造小组,马来西亚马来西亚马来西亚市Melaka 76100的Hang Tuah Jaya Malaysia Melaka University Malaysia Melaka University; Anand@utem.edu.my 7 7工程管理系,苏丹王子大学,Rafha Street,P.O。 Box 66833,Riyadh 11586,沙特阿拉伯; hmehboob@psu.edu.sa 8生物学系,科学学院,哈弗·阿尔·巴丁大学,哈法尔·巴廷39524,沙特阿拉伯 *通信:umar007khan@gmail@gmail.com(m.u.a.k.k. ); rashida@uhb.edu.sa(R.A.)Box 400,Al-Ahsa 31982,沙特阿拉伯; walarjan@kfu.edu.sa(W.S.A.A。); seegasami.samina@gmail.com(s.n.)6机械和制造工程技术学院的可持续且响应迅速的制造小组,马来西亚马来西亚马来西亚市Melaka 76100的Hang Tuah Jaya Malaysia Melaka University Malaysia Melaka University; Anand@utem.edu.my 7 7工程管理系,苏丹王子大学,Rafha Street,P.O。Box 66833,Riyadh 11586,沙特阿拉伯; hmehboob@psu.edu.sa 8生物学系,科学学院,哈弗·阿尔·巴丁大学,哈法尔·巴廷39524,沙特阿拉伯 *通信:umar007khan@gmail@gmail.com(m.u.a.k.k.Box 66833,Riyadh 11586,沙特阿拉伯; hmehboob@psu.edu.sa 8生物学系,科学学院,哈弗·阿尔·巴丁大学,哈法尔·巴廷39524,沙特阿拉伯 *通信:umar007khan@gmail@gmail.com(m.u.a.k.k.); rashida@uhb.edu.sa(R.A.)
摘要。分散的联合学习(DFL)是一种创新的范式来培训协作模型,以解决单一的失败限制。但是,FL和DFL的安全性和可信赖性因中毒攻击而受到损害,从而对其表现产生负面影响。现有的防御机制是为集中式FL设计的,它们不能充分利用DFL的特殊性。因此,这项工作引入了Sentinel,这是一种防御策略,以抵消DFL中的中毒攻击。Sentinel利用本地数据的可访问性,并定义了一个三步聚合协议,该协议包括相似性过滤,自举验证和归一化以保护恶意模型更新。Sentinel已通过不同的数据集和数据分布进行了评估。此外,已经验证了各种中毒攻击类型和威胁水平。当数据遵循IID(独立和相同分布)配置时,结果与未靶向和有针对性的中毒攻击相对于不靶向和有针对性的中毒攻击提高了最新性能。此外,在非IID配置下,它可以分析Sentinel和其他最先进的强大聚合方法的性能如何降低。
预测新型药物与生物靶标之间的相互作用是药物发现流程早期阶段的重要步骤。过去十年中,已经提出了许多深度学习方法,其中很大一部分共享相同的底层双分支架构。它们的区别仅限于使用不同类型的特征表示和分支(多层感知器、卷积神经网络、图神经网络和变压器)。相反,用于组合分支输出(嵌入)的策略基本保持不变。相同的通用架构也已广泛用于推荐系统领域,其中聚合策略的选择仍是一个悬而未决的问题。在这项工作中,我们研究了三种不同的嵌入聚合策略在药物-靶标相互作用 (DTI) 预测领域的有效性。我们正式定义了这些策略并证明了它们的通用近似器能力。然后,我们展示了在 DTI 预测领域的基准数据集上比较不同策略的实验,展示了在哪些条件下特定策略可能是显而易见的选择。
摘要 - 大脑计算机接口(BCI)技术是人脑和外部设备之间通信的流行方法。BCI最受欢迎的方法之一是运动图像(MI)。在BCI应用中,电型图(EEG)是对脑动力学的非常流行的测量,因为其无创性质。尽管对BCI主题具有很高的兴趣,但由于在EEG信号中执行模式识别任务的困难,现有系统的性能仍然远非理想。这种困难在于选择正确的脑电图通道,这些信号的信号噪声比以及如何辨别它们之间的冗余信息。BCI系统由多种组件组成,这些组件可以执行信号预处理,特征提取和决策。在本文中,我们定义了一个新的BCI框架,称为增强的融合框架,我们提出了三种不同的想法来改善现有的基于MI的BCI框架。首先,我们包括信号的附加预处理步骤:EEG信号的差异化,使其具有时间不变。其次,我们添加了一个额外的频带作为系统的特征:感觉运动节奏频段,并显示了它对系统性能的影响。最后,我们对如何在系统中做出最终决定做出了深入的研究。我们提出了多达六种类型的不同分类器和广泛的聚合函数(包括经典聚合,Choquet和Sugeno积分及其扩展和重叠函数)的用法来融合所考虑的分类器给出的信息。我们已经在20名志愿者的数据集上测试了这一新系统,该数据集执行基于运动图像的脑部计算机接口实验。在此数据集上,新系统达到了88。精度的80%。我们还提出了一个最高可获得90%占76%的系统的优化版本。此外,我们发现这对choquet/sugeno积分和重叠功能是提供最佳结果的功能。
治理结构 ………………………………………………………………………………………………………. ………………………………………………………………………………………………………………………………………… VP 目的、使命、价值观和动力 企业目标 ………………………………………………………………………………………………………………………………………………………. .............................................................................. VII
亚历山德拉·维多利亚·巴斯利、1,2,4,20 O´scar Gutie´rrez-Gutie´rrez、1,2,20 Elke Hammer、3,5 Fabian Koitka、1,2,4 Amin Mirzaiebadizi、6 Martin Steinegger、7 Constantin Pape、4,8 Linda Bo´hmer、1 Henning Schroeder、9 Mandy克莱因索格、1,2 梅兰妮·恩格勒、10 离子·克里斯蒂安·西尔斯泰亚、10 洛萨·格雷默、11,12 迪特·威尔博尔德、11,12 珍妮·阿尔特姆·乌勒、13,14 菲利克斯·马尔巴赫、15,16 格德·哈森福斯、1,2,4 沃尔夫拉姆-休伯特·齐默尔曼、2,4,17,18穆罕默德·礼萨·艾哈迈迪安,6 Bernd Wollnik, 2,4,19 和 Lukas Cyganek 1,2,4,18,21,* 1 哥廷根大学医学中心心脏病学和肺病学诊所干细胞科,哥廷根,德国 2 德国心血管研究中心 (DZHK),哥廷根,德国 3 德国心血管研究中心 (DZHK),格赖夫斯瓦尔德,德国 4 哥廷根大学卓越集群“多尺度生物成像:从分子机器到可兴奋细胞网络”(MBExC),哥廷根,德国 5 格赖夫斯瓦尔德大学医学院遗传学和功能基因组学跨学院研究所,格赖夫斯瓦尔德,德国 6 乌塞尔多夫海因里希海涅大学医学院和大学医院生物化学和分子生物学 II 研究所,乌塞尔多夫,德国 7 生物科学学院,首尔国立大学,首尔,韩国 8 乔治·奥古斯特·哥廷根大学计算机科学研究所,哥廷根,德国 9 马克斯·普朗克多学科科学研究所 NMR 信号增强组,哥廷根,德国 10 乌尔姆大学应用生理学研究所,乌尔姆,德国 11 海因里希·海涅大学物理生物学研究所,乌塞尔多夫,德国 12 生物信息处理研究所、结构生物化学研究所(IBI-7),J ulich GmbH 公司,J ulich,德国 13 科隆大学医学院和科隆大学医院科隆基因组学中心,科隆,德国 14 柏林医学系统生物学研究所基因组学平台,马克斯·德尔布吕克分子医学中心 - 柏林,德国 15 科隆大学医院人类遗传学研究所,科隆,德国 16 研究所海德堡大学人类遗传学研究所,海德堡,德国 17 哥廷根大学医学中心药理学和毒理学研究所,哥廷根,德国 18 弗劳恩霍夫转化医学和药理学研究所 ITMP 转化神经炎症和自动显微镜研究所,哥廷根,德国 19 哥廷根大学医学中心人类遗传学研究所,哥廷根,德国 20 这些作者贡献相同 21 主要联系人 *通信地址:lukas.cyganek@gwdg.de https://doi.org/10.1016/j.celrep.2024.114448
摘要:本综述旨在强调使用可逆的加法裂片转移(RAFT)聚合化合成分支共聚物和纳米凝胶领域的最新进展。筏聚合是一种可逆的失活自由基聚合技术(RDRP),由于其多功能性,与大量功能单体的兼容性以及轻度的聚合条件,它引起了极大的关注。这些参数导致最终聚合物对摩尔质量和狭窄的摩尔质量分布有良好的控制。可以将分支聚合物定义为将次级聚合物链掺入原代主链中,从而产生各种复杂的大分子结构,例如星形,移植物和超支聚合物和超支聚合物和纳米凝胶。这些子类别将在本综述中详细讨论,主要在解决方案中。
我们先前报道了由IP-S光蛋白用两光子聚合物(TPP)制造的单细胞粘附微拉伸测试仪(SCAμTT),用于研究定义的拉伸负荷下单个细胞连接的机制。该平台的主要局限性是IP-S的自动荧光,IP-S的自发荧光,TPP制造的光素,它显着增加了背景信号并使拉伸细胞的荧光成像变得困难。在这项研究中,我们报告了一种新的SCAμTT平台的设计和制造,该平台可减轻自动荧光,并证明其在单个细胞对成像中的能力,因为其相互连接被拉伸。使用IP-S和IP-VISIO(一种具有降低自动荧光的光蛋白)的两种物质设计,我们显示了平台的自动荧光显着降低。此外,通过将孔与金涂层整合到底物上,几乎完全缓解了自动荧光对成像的影响。使用这个新平台,我们证明了一对上皮细胞的能力,因为它们被拉伸至250%的应变,从而使我们能够观察到连接破裂和F-肌动蛋白回收,同时记录交界处的800 kPa应力的积累。此处介绍的平台和方法可能有可能详细研究细胞 - 细胞连接中的机制和机械转导的机制,并改善机械生物学应用中其他TPP平台的设计。