获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
时间序列聚类分析的标准实践方法涉及仔细的特征工程,通常利用专家输入来手动调整和选择特征。在许多情况下,专家输入可能不容易获得,或者社区可能尚未就给定应用程序的理想特征达成共识。本文比较了几种聚类分析方法的结果,这些方法使用手动选择的特征和自动提取的特征,应用于来自商业卡车车队的大型地理空间时间序列远程信息处理数据。探讨了特征选择、降维和聚类算法选择对聚类结果质量的影响。该分析的结果证实了先前的结果,即在聚类质量指标方面,领域无关特征与手工设计的特征具有竞争力。这些结果还为识别大型非结构化车辆远程信息处理数据中的结构的最成功策略提供了新的见解,并表明在手动选择的特征不可用的情况下,使用自动特征提取进行时间序列聚类可以成为从大规模地理空间时间序列数据中提取结构的有效方法。