最近的单细胞转录组学的发展强调了人类肠上皮中成熟吸收细胞的新谱系的存在。该亚群的特征在于Bestrophin 4(Best4)和其他标记基因(包括OTOP2,CA7,GUCA2A,GUCA2A,GUCA2B和SPIB)的特定表达。最佳4Þ细胞出现在发育的早期,并且存在于小肠和大肠的所有区域,<所有上皮细胞的<5%)。位置特异性基因表达在Best4Þ细胞中的表达素纤维表明它们在每个肠道区域中的功能专业化,如离子通道CFTR的小细胞特异性表达所示例。最佳4Þ细胞的推定作用包括腔内pH的传感和调节,对鸟叶基环酶-C信号的调节,电解质的运输,粘液的水合以及抗菌肽的分泌。但是,这些假设中的大多数缺乏功能验证,尤其是因为小鼠中没有最佳4Þ细胞。人类肠道器官中最佳4Þ细胞的存在表明该体外模型应适合研究其作用。最近的研究表明,最佳4Þ细胞也存在于猕猴,猪和斑马鱼的肠上皮中,在这里我们报告它们在兔子中的存在,这表明这些物种可以是适当的动物模型,以研究疾病发展过程中最佳4Þ细胞及其与饮食或饮食饮食或微生物局部饮食的相互作用期间的最佳动物模型。在这篇综述中,我们总结了有关最佳细胞的现有文献,并强调了其在健康和疾病中肠道上皮中预测的作用的描述。
肠上皮是一种多任务组织,拥有多种不同类型的细胞,可确保食物的消化并保护身体免受管腔内容物中有毒微生物和致癌物的侵害。它是体内更新最快的上皮,每 4-5 天完全更新一次。1 肠上皮的微环境复杂而动态。它的特点是特定的 3D 结构、一组生化梯度和机械线索,它们共同强烈影响细胞行为。2,3 多年来,源自肿瘤的细胞系以及最近的原代肠细胞已被广泛用作研究肠道生理和疾病的体外模型。然而,大多数这些模型都不能忠实地重现关键的体内特征。在这种背景下,人们越来越有兴趣以跨学科的方式结合组织工程和微制造技术,以创建更相关的组织模型。与传统的 2D 或 3D 模型相比,这些所谓的“微生理系统”提供了更复杂、更相关的系统,允许控制和标准化生产。4,5 我们将重点介绍为准确重建肠道环境的关键特征(例如 3D 结构、机械刺激或生化梯度)而开发的生物工程系统。6,7 这些模型有可能提高我们对
Ce´ line Revenu, 1,2,6 Corinne Lebreton, 3,6 Magda Cannata Serio, 4,6 Marion Rosello, 1,2 Re´ mi Duclaux-Loras, 3 Karine Duroure, 1,2 Ophe´ lie Nicolle, 5 Fanny Eggeler, 2 Marie-The´ re` se Prospe´ ri, 4 Julie Stoufflet, 1 Juliette Vougny, 1 Priscilla Le´ pine, 4 Gre´ goire Michaux, 5 Nadine Cerf-Bensussan, 3 Evelyne Coudrier, 4 Franck Perez, 4 Marianna Parlato, 3,7, * 和 Filippo Del Bene 1,2,7,8, * 1 居里研究所,PSL 研究大学,INSERM U934,CNRS UMR3215,75248 Paris Cedex,法国 2索邦大学、法国国家健康与医学研究院、法国国家科学研究院、视觉研究所,75012 巴黎,法国 3 法国国家健康与医学研究院、UMR1163、肠道免疫实验室和想象研究所,75015 巴黎,法国 4 居里研究所、巴黎圣日耳曼研究大学、法国国家科学研究院、UMR 144 巴黎,法国 5 雷恩大学、法国国家科学研究院、IGDR(雷恩遗传与发展研究所),UMR 6290,35000 雷恩,法国 6 这些作者贡献相同 7 这些作者贡献相同 8 主要联系人 *通信地址:marianna.parlato@inserm.fr (MP)、filippo.del-bene@inserm.fr (FDB) https://doi.org/10.1016/j.celrep.2024.114941
。CC-BY-NC-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 1 月 20 日发布。;https://doi.org/10.1101/2021.05.28.446131 doi:bioRxiv 预印本
[背景与目的] 小肠是负责口服食物和药物的吸收和代谢的消化器官。近年来,有报道称利用由人类iPS细胞分化而来的肠上皮细胞(F-hiSIEC)作为评价人体小肠吸收情况的体外模型,结果显示其转运载体和代谢酶的表达比通常用于该评价的Caco-2细胞更接近人体。然而,其功能的许多方面仍然未知。本研究提高了通量,并将运输载体和代谢酶的功能与Caco-2细胞进行了比较。 [方法] 利用在96孔Transwell中培养的F-hiSIEC和Caco-2细胞,评估了模型化合物从顶端到基底(A到B)和从基底到顶端(B到A)方向的细胞膜通透性,并同时确认了代谢物的产生。
微生物会影响癌症的开始,进展和治疗反应。IL-17信号传导通过调节微生物而导致肠道屏障免疫,但也会促进肿瘤的生长。 知识差距仍然存在有关肠IL-17-IL-17RA信号传导及其微生物调节对远处肿瘤行为的影响。 We demonstrate that gut dysbiosis induced by systemic or gut epithelial deletion of IL-17RA induces growth of pancreatic and brain tumors due to excessive development of Th17, primary source of IL-17 in human and mouse pancreatic ductal adenocarcinoma, as well as B cells that circulate to distant tumors. 微生物依赖性IL-17信号传导增加了肿瘤细胞中的DUOX2信号传导。 通过靶向微生物消融来阻止代偿环的靶向微生物消融,可以克服对IL-17RA的药理抑制作用的效率低下。 这些发现证明了不同隔室中IL-17-IL-17RA信号的复杂性以及在癌症治疗过程中对其稳态宿主防御功能的相关性。IL-17信号传导通过调节微生物而导致肠道屏障免疫,但也会促进肿瘤的生长。知识差距仍然存在有关肠IL-17-IL-17RA信号传导及其微生物调节对远处肿瘤行为的影响。We demonstrate that gut dysbiosis induced by systemic or gut epithelial deletion of IL-17RA induces growth of pancreatic and brain tumors due to excessive development of Th17, primary source of IL-17 in human and mouse pancreatic ductal adenocarcinoma, as well as B cells that circulate to distant tumors.微生物依赖性IL-17信号传导增加了肿瘤细胞中的DUOX2信号传导。通过靶向微生物消融来阻止代偿环的靶向微生物消融,可以克服对IL-17RA的药理抑制作用的效率低下。 这些发现证明了不同隔室中IL-17-IL-17RA信号的复杂性以及在癌症治疗过程中对其稳态宿主防御功能的相关性。通过靶向微生物消融来阻止代偿环的靶向微生物消融,可以克服对IL-17RA的药理抑制作用的效率低下。这些发现证明了不同隔室中IL-17-IL-17RA信号的复杂性以及在癌症治疗过程中对其稳态宿主防御功能的相关性。
IFN-γ的产生对于控制多种肠道感染至关重要,但是它对肠上皮细胞(IEC)的影响尚不清楚。隐孢子虫寄生虫仅感染上皮细胞,并且干扰素激活IEC中转录因子Stat1的能力是寄生虫清除所必需的。在这里,在感染过程中使用单细胞RNA测序在感染过程中促进IEC,发现在感染过程中,脑海中肠细胞的比例增加,并诱导IFN-γ依赖性基因信号,而未感染和感染细胞之间是可比的。这些分析是通过体内研究补充的,这表明寄生虫对照需要IEC的IEC表达。出乎意料的是,用IFN-γ的IFNG - / - 小鼠的治疗表明对这种细胞因子的IEC反应与寄生虫负担的延迟减少相关,但不会影响寄生虫的发展。这些数据集提供了对IFN-γ对IEC的影响的洞察力,并提出了一个模型,其中IFN-γ信号传导对未感染的肠上皮细胞对于控制隐孢子虫很重要。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecom- mons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2024年4月30日发布。 https://doi.org/10.1101/2024.04.28.591245 doi:biorxiv Preprint
动物的消化道形成了一种选择性屏障,可以吸收营养素,离子和水,但限制了与潜在破坏性剂(例如毒素和病原体)接触。它还拥有一个复杂的菌群,该菌群通过营养和维生素的供应而有助于宿主健身(Thursby and Juge,2017年)。通过专门的物理屏障和复杂的粘膜免疫系统实现了消化道对病原体的有效免疫反应的能力(Sansonetti,2004年)。在哺乳动物中,众多先天和适应性免疫机制以沿消化道的区域化方式作用,以确保这种选择性。这些机制的效率得到了肠道上皮更新本身的强大能力的支持。上皮更新,因此保留了肠道完整性(Allaire等,2018; van der Flier and Cleer and Clevers,2009)。在消化道中免疫和耐受机制的复杂平衡中破裂,使宿主处于感染,炎症性疾病或肠道泄漏的风险(Allaire等,2018; Buchon等,2013a; Sansonetti,2004)。确保菌群维持同时预防致病感染的分子机制在很大程度上仍然未知,并且在有机体水平上仍然难以应对。由于其与哺乳动物肠道的解剖学和生理相似性,果蝇肠道是研究肠道病理生理学的首选模型(Lemaitre和Miguel-Aliaga,2013年)。果蝇的研究已经提供了有关粘膜先天免疫,肠道性认同,上皮更新,宿主 - 跨性别相互作用的见解,以及全球范围内有关肠道如何在有机体中整合的全球(Colombani和Andersen,2020)。