上下文细胞间交流对于多细胞生物的发展和维护至关重要。最近的研究强调了哺乳动物胚胎中胚外细胞(滋养剂和低纤维细胞)和多能胚胎细胞(epiblast)之间通信的重要性[1,2,3]。具体而言,由小细胞产生的细胞外基质在控制多脂蛋白层状干细胞的细胞增殖中起关键作用。我们对猪胚胎干细胞的研究已经证实了细胞外基质在影响调节层细胞多能性的信号通路和转录因子中的重要性[4]。我们最原始的观察结果之一依赖于四叠蛋白CD9,CD81和CD63表达的检测主要是在滋养剂中(未发表)。这些四翼烷蛋白是细胞外囊泡(EV)的已知标记,它们是各种细胞类型的小脂质囊泡[5]。evs参与将信号蛋白,细胞因子和转录因子转运到受体细胞,影响各种过程,包括免疫反应,肿瘤进展和胚胎发育[6,7]。尽管已经在小鼠胚胎中研究了胚胎和胚外细胞之间的EV介导的细胞对细胞通信,但焦点主要是由小鼠多能干细胞分泌的电动汽车[8,9]。这项研究旨在研究EVS在促进交流和影响这些细胞类型的生物学的促进性滋养剂细胞和多能细胞分泌的电动汽车的作用。这项研究由ANR STEM4PIGS(2025-2028)资助,并将支持从2025年9月开始的博士生。
CRISPR筛查目前正在广泛的研究领域中应用,我们的实验室正在对癌细胞和胚胎干细胞进行研究。此外,我们开发了一种基于单细胞CRISPR分析后遗传破坏后随时间的表达变化来构建基因调节网络的方法。网络控制点还通过数学理论确定,公司正在使用CRIPSR系统通过多基因控制来控制细胞命运。
渐近对称性是在无穷远处不消失并能保持边界条件的局部对称性。它们被认为代表了系统的物理对称性。例如,在 AdS/CFT 对偶的背景下,渐近 AdS 时空中的渐近对称性对应于边界系统的全局对称性。对于黑洞几何,重点通常放在视界以外的物理上。在这种情况下,可以方便地将事件视界视为有效意义上的“边界”,例如在所谓的膜范式 [ 1 ] 中就是这样做的。将渐近对称性的讨论扩展到事件视界并考虑保持黑洞几何视界的微分同胚 [ 2 – 6 ] 及其物理含义是很自然的。
uhrf1在受精后主要迁移到卵和胚胎中的细胞质,其中少量的UHRF1在某些区域(例如ICR)中维持甲基化修饰的细胞核中剩余少量。另一方面,除了受精后立即卵和胚胎外,所有UHRF1均易位到细胞核中,并在与细胞分裂相关的DNA复制过程中复制甲基化修饰。由于使用卵的实验受到局限性,因此研究小组使用人类培养的细胞发现NLRP5和OOEEP与构成SCMC的核心蛋白之间的结合。研究小组还产生了一条细胞系,可以通过药物诱导的诱导UHRF1(称为Cuhrf1:图1),该细胞系已被修饰以将其定位为细胞质,就像卵子一样,并检查了Cuhrf1在NLRP5和OOEP存在下CuHRF1变化的蛋白质稳定性。我们发现,在OOEEP存在下,CuHRF1的稳定性不会改变,但是在NLRP5存在下,Cuhrf1的稳定性增加了两倍以上(图2)。我们还发现,NLRP5缺陷小鼠的卵中的细胞质和细胞核中UHRF1蛋白的量均降低。该结果表明,在易位进入细胞核后,稳定的UHRF1的一部分可能稳定存在。
但是,鸡等鸟类每天只能产一个卵子,因此,为了获得一个细胞分裂前的受精卵,即原核合子,必须解剖母鸡并从输卵管中采集,这非常低效。此外,鸟类卵子的蛋黄很大,很难直接显微操作受精卵。因此,为哺乳动物等其他动物物种建立的方法不能用于生产基因组编辑鸡。因此,我们的研究小组决定使用原始生殖细胞(PGC),即生殖细胞的起源(图3)。在鸟类中,PGC在3天大的胚胎的血管中循环,这是其他动物物种中很少见到的独特现象。我们一直在利用从3天大的胚胎中采集的PGC研究鸡的受精机制。利用1号染色体(CM1)的培养技术等,建立了在培养皿中培养PGC的同时进行基因组编辑的方法。将基因组编辑雄性的培养PGC移植到同性的受体胚胎中时,移植的基因组编辑PGC和受体自己的PGC在受体胚胎的睾丸中共存,从而产生生殖系嵌合鸡。生殖系嵌合鸡的睾丸产生来自基因组编辑PGC的精子,通过与野生型雌性交配,可以获得部分目标基因序列杂合缺失的基因组编辑鸡(第一代:G1)。接下来,在性成熟雄性和雌性的G1交配获得的后代中,出现了基因纯合缺失的基因组编辑鸡(第二代:G2)。在纯合缺失的基因组编辑鸡中,目标基因序列的删除会引起移码,从而导致终止密码子的过早出现,从而使基因功能失活并阻止正常的蛋白质产生。
哺乳动物的植入前胚胎通常与非整倍性抗衡,这是由于配子的减数分裂误差或受精后发生的有丝分裂错误隔离事件而产生的。不管起源如何,错误分离的染色体都被封装在微核(MN)中,这些染色体是从主核上空间分离的。我们对MN形成的许多知识都来自在肿瘤发生过程中分裂的体细胞,但是早期胚胎发生的误差裂解阶段根本不同。一个独特的方面是,经常观察到细胞碎片(CF),即小细胞亚细胞从胚胎囊泡中夹住。cf,并且可能代表对染色体错误隔离的反应,因为它仅在Mn形成后才出现。MN有多种命运,包括封存到CFS中,但是发生这种情况的分子机制仍不清楚。由于核包膜破裂,MN和CFS中包含的染色体材料易于双链DNA断裂。尽管有这种损害,但胚胎仍可能会发展到胚泡阶段,排除含有CFS的染色体,以及非分裂的非各个非各个非各个型胚泡,从参与进一步的开发中。这些是否是纠正MN形成或消除植入潜力较差的胚胎的尝试是未知的,本综述将讨论CF/Blastomere排除DNA去除DNA的潜在影响。我们还将推断有关细胞内介导的细胞内途径的了解,从而介导体细胞中的MN形成和破裂,以培养植入前的胚胎发生以及核芽和DNA如何释放到细胞质中可能会影响整体发育。
7。职位描述:医学博士Cantas Alev教授的实验室在京都大学的人类生物学高级研究研究所(ASHBI),对人类和其他物种的早期胚胎发育的体外重建和分析感兴趣。我们的实验室正在利用经典胚胎学和基于多能干细胞的体外模型系统的组合。我们对中胚层形成和图案的体外概括特别感兴趣(即体外胃胃),中胚层器官发生和中胚型驱动的形态发生过程,包括人类和非人类多能干细胞(ESC/IPSC)的内胚和外胚层器官发生以及组织形成。与ASHBI的其他科学家合作,我们的实验室旨在在体外器官发生和“合成胚胎学”领域建立新颖的科学概念和破坏性技术,总体目标是提高我们对人类发展,疾病和进化的理解仍然有限。我们正在寻找具有积极进取和才华横溢的新成员,他们在“合成生物学”和体外器官发生方面分享了我们实验室的兴趣。我们特别寻找具有经验的候选人高含量3D/4D成像,单细胞RNA/ATAC-SEQ(和其他 - 组类型),AI-ML驱动的数据分析。在干细胞生物学和“器官”技术,基于CRISPR/CAS9的基因组编辑技术,包括光遗传学,微能力,生物材料在内的生物工程方法,基于CRISPR/CAS9的基因组编辑技术,基于CRISPR/CAS9的基因组编辑技术,生物工程方法的候选者。候选者。这是为快速新兴领域的建立和发展做出贡献的绝佳机会,同时解决了人类和其他物种的发展,疾病和进化的基本问题。如果您想成为我们动态,多样和包容性的国际研究团队的一部分,请申请。
教学大纲:植物组织培养实验室的要求;植物组织培养的技术;媒体组件和准备工作;各种外植体的灭菌技术和接种;各种外植体的无菌操纵;愈伤组织诱导和植物再生;重要农作物的微型传播;花药,胚胎和胚乳文化;再生植物的硬化 /适应;体细胞胚发生和合成种子的产生;分离原生质体;培养原生质体的演示;隔离DNA的证明;基因转移技术的演示,直接方法;基因转移技术的演示,间接方法;证明遗传转化的确认;凝胶电泳技术的演示。纳米颗粒的绿色合成及其大小的表征。
干细胞研究从词源上讲,“生物伦理”一词的意思是“ BIOS的伦理”或“生命的伦理学”,但是古希腊的根本BIOS具有不同的含义。它不是指“生命”,也不是为了动画或动物的生命(希腊人使用佐伊一词),而是“生活的生活”或“生活方式”或“生活的生活方式”或“生活的人类生活”。动物有生命(Zoe);一个人拥有生命(BIOS) - 一种生活不仅在生理上,而且在精神,社会,文化,政治和精神上都过着生活。1因此,生物伦理学在特定情况下的适当应用不必开始判断“ X”或“ Y”是道德还是不道德的,而是通过对生物医学和行为科学和技术发展的全部人类发展和道德意义的基本询问。因此,必须考虑与与特定技术无关的更广泛的道德和社会问题有关的特定技术活动,例如胚胎和干细胞研究,辅助生殖,克隆或知识和技术的使用。这是因为科学研究是人类活动,主要是道德努力。2胚胎干细胞胚胎干细胞(ESC)是人体中不同类型的组织起源的细胞。今天,人类ESC的制备意味着以下内容:(a)人类胚胎的产生(通常是通过体细胞核转移技术)和/或使用由视野内施肥(IVF)或冷冻(冷冻保存)胚胎引起的多余胚胎; (b)将这些胚胎发育到胚泡阶段; (c)从胚细胞或内部细胞质量(ICM)的分离中分离出适当的胚胎 - 这意味着胚胎的破坏; (d)将这些细胞培养在适当的培养基中的辐照小鼠胚胎成纤维细胞的进料层上,它们可以繁殖并结合形成菌落; (e)这些菌落的重复亚培养导致形成能够无限期地繁殖的细胞系,从而保留了ESC的特征数月和几年。