目标:Dapagliflozin是一种用于治疗2型糖尿病的药物,也用于某些心力衰竭和慢性肾脏疾病状况。在这项研究中,我们研究了Dapagliflozin(DAPA)对马内二醛(MDA),脂质氢过氧化物(LOOH),超氧化物歧化酶(SOD),总硫醇(T-SH)和总抗氧化能力(TAC)和氧化应激抗性抗应激胁迫的影响。方法:用甲氨蝶呤(MTX)(10-0.160μM)和DAPA(10-0.150 µM)处理H9C2心肌细胞细胞。测量细胞活力和氧化应激参数。结果:与MTX组相比,对照组和DAPA组的MDA和LOOH水平显着降低(p <0.001)和DAPA组(分别为P <0.001; P <0.05),而SOD(两者的P <0.001),T-SH(p <0.001; P <0.001; P <0.01; p <0.01; p <0.01&p <0.05;与MTX组相比,DAPA组。除MDA外,对照组和DAPA组之间没有显着差异。但是,与对照组相比,DAPA组的MDA水平明显更高(p <0.05)。MDA水平的de裂与DAPA治疗组中的SOD活性的增加显着相关(R:-0.814; P:0.014)。结论:细胞活力增加,MDA和LOOH的水平降低,而SOD,T-SH和TAC水平在H9C2心肌细胞中升高,由氧化应激诱导。这项研究中获得的发现表明,DAPA可能对由氧化应激引起的心肌病具有有益作用。关键字:达帕格列申辛,H9C2心肌细胞,丙二醛,甲氨蝶呤,氧化应激,超氧化物蒸馏酶
现代生物医学技术给人类带来了生物伦理困境。一方面,医学进步可以让人们的生活更加轻松,但另一方面,干涉人性的问题又使人性本体论、允许的改造界限、科学家和专家应用最新技术的责任等最基本的问题变成了现实,因为人性的各个方面都是完整的,相互联系的,因此会产生难以预测的后果。在科学文献中,有很多关于不同教派对基因操纵的态度的信息。本文介绍了总结和系统化主要基督教教派对编辑人类胚胎基因组问题的态度的经验。从基督教世界观的角度对现代生物医学技术的评价是不同的,一方面,由于与更高的神圣原则相关的精神体验而具有不同的道德深度;另一方面,如果我们牢记东正教、天主教和新教对基因操作问题的特殊性,那么由于历史上出现并延续至今的信仰和教义差异,其解释也多种多样。
2012 年,基因编辑领域出现了一项重大科学突破:CRISPR-Cas9 的发现。这项新技术使科学家能够比以往更快、更便宜、更准确地编辑人类基因组。研究人员现在有可能治愈癌症、ALS 和阿尔茨海默病等疾病。CRISPR 不仅提供了一种治愈目前患有疾病的人的机制,而且还建立了一种修改胚胎 DNA 的方法,以防止后代遗传该疾病。由于使用 CRISPR 改变人类基因组会给人类基因库带来不可逆转的代际影响——并且鉴于这项从子宫开始改变孩子未来的技术具有吸引力——本评论考虑父母是否有使用 CRISPR 编辑孩子 DNA 的基本宪法权利。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
胚胎发生是最重要的生活阶段之一,因为它决定了生物体的健康生长。然而,外部受精物种的胚胎(例如大多数鱼类)在发育过程中直接暴露于环境中,可能会受到DNA损害因子(污染物,紫外线,活性氧)的威胁。为了抵消DNA碎片化的负面影响,鱼类胚胎会演变出复杂的损伤反应途径。DNA修复途径已在某些鱼类中进行了广泛的研究,例如斑马鱼(Danio Rerio)。另一方面,我们的文献综述表明,关于非模型水产养殖鱼类的DNA损伤反应和修复的知识很少。此外,几个证据是DNA修复基因和蛋白质在器官发生,不同组织中时空定位以及其对正常胚胎发育的不可分性性的额外作用。在这篇综述中,我们将在胚胎开发过程中总结不同DNA修复途径的特征。我们描述了在发育过程中如何调节DNA修复基因和蛋白质的表达,以及它们的有机遗传学作用以及DNA修复基因的表达如何响应遗传毒性应激。这将有助于解决遗传毒性应激与胚胎表型之间的联系。此外,可用的数据表明胚胎可以修复受损的DNA,但是早期应激的影响可能会在后期表现为行为变化,肿瘤或神经变性。总体而言,我们得出的结论是,需要对鱼胚胎中的DNA修复进行更多的研究。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2023年4月22日发布。 https://doi.org/10.1101/2023.04.22.537909 doi:Biorxiv Preprint
心脏起搏器细胞(CPC)启动了驱动心脏节奏跳动的电脉冲。cpcs居住在一种良好的,富含ECM的微环境中,称为Sinoatrial节点(SAN)。令人惊讶的是,关于SAN的生物化学组成或机械性能以及心脏影响CPC功能中的独特结构特征如何保持鲜为人知。在这里,我们已经确定了SAN的开发涉及构建“软”大分子ECM,该ECM专门封装了CPC。此外,我们证明,对胚胎CPC的底物刚度高于体内测量的质子刚度会导致CPC自动性所需的HCN4和NCX1离子通道的相干电振荡和失调。共同表明,局部力学在维持胚胎CPC函数方面起着关键作用,同时定义了对于胚胎CPC成熟最佳的材料属性范围。
由于诊断延迟和肿瘤生物学侵袭性,胰腺癌仍然是一种致命疾病。据报道,致癌基因和风险因素会影响胰腺胚胎发生中的信号通路,从而导致胰腺癌的发生。尽管使用啮齿动物模型的研究已经获得了有见地的信息,但是人类胰腺组织的稀缺使得人们很难理解人类胰腺的发育方式。IPF1/PDX1、HLXB9、PBX1、MEIS、Islet-1 等转录因子和 Hedgehog、TGF-β 和 Notch 等信号通路正在指导胰腺器官发生。上述通路中的任何紊乱都可能导致胰腺癌。TP53:和 CDKN2A 是肿瘤抑制基因,TP53 突变和 CDKN2A 体细胞缺失是胰腺癌的驱动因素。本综述阐明了胰腺癌所涉及的复杂信号机制、胰腺发育中的相同信号通路、当前针对信号分子的治疗方法以及危险因素在促进胰腺癌中的作用机制。
1 巴塞尔大学生物中心,瑞士巴塞尔 4056。2 华盛顿大学电气与计算机工程系,美国华盛顿州西雅图 98195。3 华盛顿大学 Paul G. Allen 计算机科学与工程学院,美国华盛顿州西雅图 98195。4 Allen 细胞谱系追踪发现中心,美国华盛顿州西雅图 98195。联系方式:madalena.pinto@unibas.ch (MMR-P.);alex.schier@unibas.ch (AFS)
基因组选择改变了牲畜行业,从而使动物的早期选择。自1968年以来已经描述了植入前胚胎的活检抽样。然而,直到2010年之后,随着分子生物学技术(例如整个基因组扩增和SNP芯片)的发展,下一代测序才成为牛胚胎的商业上。现在可以决定哪种胚胎不仅基于接受者的可用性或胚胎形态来转移,而且还基于基因组估计。该技术可以针对牲畜中的广泛应用实施。在这篇评论中,我们讨论了胚胎活检对基因组选择的使用,并与GIR和Girando Brazilian育种计划分享我们的经验,以及在巴西牛在体外胚胎生产实践中实施它的未来目标。