肺部手术后促进恢复的手术表明,数字引流系统比模拟系统具有多种优势 (4)。数字引流系统的优点如下:(I) 这些设备重量轻、结构紧凑,并且由于集成了抽吸泵,因此不需要连接到壁吸装置,这有利于患者转移。(II) 可以客观地量化和存储有关漏气的信息,并随时间推移进行存储,从而消除临床判断的变化。因此,关于胸管拔除的决策更加容易 (5)。避免外部吸入和使用数字引流系统均被证明具有低级别证据,但具有强烈的推荐级别。还应注意,与胸腔积液量相关的胸管拔除推荐标准是最多 450 mL/24 小时(证据级别:中等;推荐级别:强)。Thoraguard 手术引流系统(Centese,内布拉斯加州奥马哈)是一部新颖的
[参考] 1。Vikas Pathak等人,接受介入肺部程序的患者的抗凝剂和抗血小板治疗的管理,Eur Respir Rev 2017; 26:170020 2。James D.Douketis等人,执行摘要:抗血栓疗法的围手术期管理:美国胸部医师学院临床实践指南,胸部,2022年; 162:5:1127-1139 3。Indravadan J. Patel等人,介入放射学共识学会指南,围骨围骨治疗的血栓形成和出血风险,接受经皮图像引导的患者,血管和介入放射学杂志杂志,介入介绍性和介入的放射性放射学指南。 30:1168–1184 4。neuberger J等人,关于英国胃肠病学会临床实践中使用肝活检的指南,直肠2020; 69:1382–1403。doi:10.1136/gutjnl-2020-321299
空气泄漏的视觉评估,这是过于主观的,但大多数团队都使用了。由于开发了数字胸部排水以应对术后延长的空气泄漏,因此它已经显示出提高的一致性和准确性,具有恒定,可自定义的负性胸膜压力的强度,与正常的呼吸生理学更一致(12-15)。为了实现更好的标准化,我们合并了一个数字排水系统,该系统具有可量化的空气泄漏监测和动态图形可视化(12-15),并在胸管拆卸过程中。这个案例系列描述了我们通过数字排水进行这种增强策略的最初经验。我们根据Strobe报告清单介绍以下文章(可在https://jtd.amegroups.com/article/ view/10.21037/jtd-22-22-1749/rc中找到)。
图 1 人工智能模型正确分类为胸腔积液的 X 光片示例。A、右侧位(kVp 80,mAs 6.5)和 B、腹背位(kVp 90,mAs 6.5)X 光片投影,显示一只单侧有轻微胸腔积液征兆的狗。侧位投影(箭头)上肺部前腹侧有囊泡图案。游离液体在心脏腹侧积聚,增加了纵隔脂肪的 X 光不透明度(箭头)。这只狗在手术中被确认有左前肺叶扭转和胸腔积液
结果:总共181例NSCLC患者被诊断为术中意外的恶性PD,并与术后组织学检查确认。中,有80名(44.2%)患者仅接受胸膜结节活检,而101(55.8%)接受了原发性肿瘤切除术(47例sublobar切除术和54例肺叶切除术)。所有患者的无进展生存期和总生存期分别为13和41个月。切除组的患者的无进展生存期(19.0 vs. 10.0个月,p <0.0001)和整体生存期(48.0 vs. 33.0个月,p <0.0001)的生存期明显好于活检组。在切除组中,糖骨切除和叶切除术患者之间没有统计差异(p = 0.34)。单变量和多元分析鉴定出原发性肿瘤切除,靶向辅助治疗以及肿瘤大小(≤3cm)作为独立的预后因素。
honokiol是一种从中草药木兰中分离出的生物活性成分,可以有效抑制肿瘤细胞的生长。根据文献,Honokiol可以诱导胰腺癌和胃癌细胞的凋亡(4,5),并且还可以抑制黑色素瘤的生长和转移(6)。当前的乳腺癌研究仅限于Honokiol对两个人表皮生长因子受体2(HER2)阴性细胞系MDA-MB-231和MCF-7(7,8)的影响。Honokiol在乳腺癌SK-BR-3细胞中的作用和机制尚未报道。SK-BR-3细胞,它是上皮细胞的粘附细胞。作为具有里程碑意义的乳腺癌细胞,SK-BR-3细胞在许多研究中已被用作实验对象(9-11)。SK-BR-3细胞是具有高HER2表达的乳腺癌细胞。HER2阳性乳腺癌的复发和转移率很高,预后不良(12)。 发现可以有效抑制SK-BR-3细胞生长的抗肿瘤药物对于治疗乳腺癌很重要。 因此,在本研究中,我们使用不同浓度的HONOKIOR治疗乳腺癌SK-BR-3细胞,以观察其对SK-BR-3细胞的增殖,凋亡,侵袭和迁移的影响,并检测WNT信号传导途径相关蛋白质β-Catenin和c-Myc中WNT信号传导途径中表达的变化。 这可以提供新的证据,表明Honokiol可以用作有效治疗乳腺癌的抗肿瘤药物。HER2阳性乳腺癌的复发和转移率很高,预后不良(12)。发现可以有效抑制SK-BR-3细胞生长的抗肿瘤药物对于治疗乳腺癌很重要。因此,在本研究中,我们使用不同浓度的HONOKIOR治疗乳腺癌SK-BR-3细胞,以观察其对SK-BR-3细胞的增殖,凋亡,侵袭和迁移的影响,并检测WNT信号传导途径相关蛋白质β-Catenin和c-Myc中WNT信号传导途径中表达的变化。这可以提供新的证据,表明Honokiol可以用作有效治疗乳腺癌的抗肿瘤药物。我们根据MDAR报告清单介绍以下文章(可在http://dx.doi.org/10.21037/tcr-20-3110中找到)。
摘要:人工智能(AI)领域目前正在经历广泛增长时期,涉及各个领域,医学也不例外。人工智能的基础是数学和计算机科学,人工智能目前在工业和研究领域的声誉建立在三大支柱之上:大数据、高性能计算基础设施和算法。在当前的数字时代,存储能力和数据收集系统的增强,导致人工智能算法的数据流量巨大。数据的大小和质量是影响人工智能应用程序性能的两个主要因素。但是,它高度依赖于手头的任务类型和选择执行此任务的算法。AI 可能通过预读检测异常、精确量化(例如肿瘤体积病变跟踪和心脏体积和图像优化)来自动化放射学中的几项繁琐任务。尽管基于 AI 的应用程序为改善放射学工作流程提供了绝佳机会,但仍需要从图像标准化、复杂算法开发和大规模评估开始解决几个挑战。将 AI 整合到临床工作流程中还需要解决与患者敏感数据的安全性和保护以及责任相关的法律障碍,然后 AI 才能在心胸成像领域充分发挥其潜力。
围绕如何利用我们对MZL发病机理的加深理解的新治疗模型概念化,识别MZL发病机理的那些独特特征,并考虑如何最好地以高度疾病的方式抑制这些途径和网络是有益的。为了欣赏这些机会,我们在基本危险的生物学的背景下围绕特定的治疗干预措施制定了概念。基因组分析对我们对MZL分子发病机理的理解产生了重大影响(4-19)。这些经验已经确定了B细胞受体(BCR),NF-κB,Janus激酶(JAK)/信号转录器和转录激活因子(Stat)的功能的关键畸变(stat)和类似Toll-like受体/interleukin(TLR/IL)信号传导,这些信号至少具有一种可影响生物学的特性代理。在此,我们强调了在疾病中至少具有理论应用的生物学和药物。
可帮助患者对胸管和住院时间设定切合实际的期望,这仍然是微创手术后患者满意度的主要驱动因素。此外,微创方法的使用扩大了肺切除术的纳入标准,越来越多的肺功能不佳和高龄患者接受手术。4-8 传统上接受开胸手术的手术候选人病例组合的变化有必要建立风险模型。尽管与开胸手术相比,电视辅助胸腔镜肺切除术的并发症发生率较低,9 但欧洲胸外科医师协会 10(ESTS)和胸外科医师协会 11 普通胸外科数据库最近进行的 2 项病例匹配分析显示,两组患者的 PAL 发生率相似。本研究的目的是从 ESTS 数据库中注册的大量患者中制定一个总体风险评分,用于预测 VATS 肺叶切除术后发生 PAL 的可能性 ( 视频 1 )。