表面和 PCDD 异构体表面的能垒变化较大,但作用角的影响较小,可以推测在后续的优化中应考虑铁原子结构变化对能垒的影响
本文对在独立衬底上生长的 GaN 外延层上的 Ni 肖特基势垒进行了表征。首先,通过对裸材料进行透射电子显微镜 (TEM) 图像和导电原子力显微镜 (C-AFM) 的纳米级电学分析,可以看到晶体中的结构缺陷以及电流传导的局部不均匀性。在外延层上制造的 Ni/GaN 垂直肖特基二极管的正向电流-电压 (IV) 特性给出的肖特基势垒高度平均值为 0.79 eV,理想因子为 1.14。对一组二极管的统计分析,结合温度依赖性测量,证实了在该材料中形成了非均质肖特基势垒。从 Φ B 与 n 的关系图中可以估算出接近 0.9 eV 的理想均质势垒,与通过电容-电压 (C – V) 分析推断出的势垒相似。通过 C-AFM 获得的局部 IV 曲线显示了电流传导开始点的不均匀分布,这又类似于在宏观肖特基二极管中观察到的电流传导开始点。最后,在不同温度下获得了在无缺陷区域制造的二极管的反向特性,并通过热电子场发射 (TFE) 模型描述了其行为。
近年来,氮化镓 (GaN) 基高电子迁移率晶体管 (HEMT) 因其在降低开关损耗、维持高击穿电压以及保持高温稳定性方面所表现出的卓越性能,其商业化进程不断加快 [1,2]。大尺寸 Si 衬底上 GaN 外延生长技术的进步降低了生产成本。同时,Si 上的 HEMT 器件可以轻松集成到现有的 Si 铸造厂中 [4-6]。上述优势使 GaN 基 HEMT 器件更接近大众市场应用。阻挡层是 HEMT 器件中的关键元件之一,它决定了导电通道的电阻。AlGaN 是最常用的阻挡材料。在 AlGaN / GaN 界面区域形成的二维电子气 (2DEG) 表现出良好的稳定性、低的薄层电阻、高的载流子密度和高的电子迁移率 [7,8]。由于在 AlN / GaN 界面区域形成了更高的 2DEG 密度,AlN 作为阻挡层材料也引起了人们的关注 [9]。据报道,薄层电阻 (Rs) 值低至 128 Ω/sq,2DEG 密度为 3.21 × 10 13 / cm 2 [10]。此外,在 AlN 系统中可以避免合金散射,从而提高 2DEG 霍尔迁移率 [11,12]。已经证明了基于 AlN 阻挡层的 HEMT 器件具有低栅极漏电和高 I on / I off 比 [13]。表 1 总结了最近对具有最佳 Rs 性能的 AlN / GaN 异质结构的研究。然而,由于 AlN 与 GaN 沟道层的晶格失配较大 (2.5%),因此 AlN 的弛豫是一个主要挑战。氮化硅 (SiN x ) 帽层已被用作表面钝化层,以避免/减少 AlN 弛豫 [ 14 ] 。然而,钝化帽层的成分和厚度对抑制弛豫的影响很少被研究。在本文中,我们报告了包含原位生长的 GaN 和/或 SiN x 帽层的 AlN/GaN 异质结构的长期 2DEG 稳定性。
摘要 半导体器件的操作速度在一定程度上取决于电子通过半导体纳米结构的时间。然而,由于量子力学中对传输时间的定义存在争议,以及电子在半导体器件中遇到的有效势函数复杂,传输时间的计算十分困难。本文基于改进的传输矩阵法数值求解薛定谔方程,并利用HG Winful关系计算停留时间,开发了一种数值方法来评估电子在半导体器件中的传输时间。与精确可解析的矩形势垒情况相比,所建立的数值方法精度高,误差小,可用来研究半导体器件的动态响应和操作速度。所提出的数值方法成功地应用于电子在双矩形势垒中的停留时间的计算,并揭示了传输时间与势垒数量的依赖关系。
基于 Al/AlO x /Al 约瑟夫森结的超导量子比特是通用量子计算机物理实现最有希望的候选者之一。由于可扩展性和与最先进的纳米电子工艺的兼容性,人们可以在单个硅芯片上制造数百个量子比特。然而,由非晶电介质中的双层系统(包括隧道势垒 AlO x )引起的这些系统中的退相干是主要问题之一。我们报告了一种约瑟夫森结热退火工艺开发,用于结晶非晶势垒氧化物(AlO x )。获得了热退火参数对室温电阻的依赖关系。所开发的方法不仅可以将约瑟夫森结电阻提高 175%,还可以将其降低 60%,R n 的精度为 10%。最后,提出了关于隧道势垒结构修改的理论假设。建议的热退火方法可用于为广泛使用的固定频率 transmon 量子比特形成稳定且可重复的隧道屏障和可扩展的频率调整。
卤素空位的迁移是铅卤化物钙钛矿中相分离和材料降解的主要原因之一。在这里,我们使用第一性原理密度泛函理论来比较立方 CsPbBr 3 的块体和 (001) 表面溴空位的迁移能垒和路径。我们的计算表明,由于表面的软结构允许键长变化大于块体,因此表面可能促进溴空位在这些钙钛矿中的迁移。我们计算出表面轴向到轴向溴空位迁移的迁移能仅为块体值的一半。此外,我们研究了用四种不同的碱金属卤化物单层改性表面的效果,发现对于 NaCl 钝化系统,迁移势垒几乎增加到块体值。发现迁移势垒与 CsPbBr 3 表面和碱金属卤化物单层之间的晶格失配有关。我们的计算表明,表面可能在介导卤化物钙钛矿中的空位迁移方面发挥重要作用,这一结果与具有大表面体积比的钙钛矿纳米晶体有关。此外,我们提出了通过使用碱金属卤化物盐钝化来抑制这一不良过程的可行方法。
一个核心假设是,具有最大负自由能且不受整体成分约束的反应将首先发生在界面处(反应 1),因为成核势垒在很大程度上取决于反应能量(方程 1)。但是,如果两个相具有高度的结构相似性,则可以假设成核相的表面能贡献将很低(例如拓扑化学),并且还会导致较低的成核势垒 ∆ G †(反应 2)。21 (c) 左侧表示简单串行反应途径的示意反应坐标图。实际固态反应由多个并行步骤进行,可以用反应网络更好地建模,如右图所示。经参考文献许可转载。26
• 为了通过应变诱导的 Stranski-Krastanov 过程自发形成外延 QD,QD 材料和势垒材料之间的晶格失配必须达到一定的最小值。 • 需要紧密排列的 QD,以便孤立 QD 中通常观察到的离散能级加宽以形成微带。还需要高密度的 QD 以实现充分的吸收。为了实现所需的高密度应变 QD,几乎肯定需要某种应变平衡的 QD 超晶格结构来防止形成晶格失配诱导的穿透位错。这些缺陷会导致高度的非辐射复合,从而降低设备性能。 • 还需要 QD 和势垒材料中的载流子寿命长,以实现有效的载流子提取。
摘要:我们实施了主要基于玻姆力学的量子建模来研究包含事件间强耦合的时间序列。与具有正常密度的时间序列相比,此类时间序列与罕见事件相关。因此,采用高斯统计数据会严重低估其罕见事件的发生。本研究的主要目标是从量子测量的角度研究罕见事件对时间序列概率密度的影响。为此,我们首先使用多重分形随机游走 (MRW) 方法对时间序列的非高斯行为进行建模。然后,我们研究了 MRW 的关键参数 λ 在时间序列导出的量子势中的作用,该参数控制非高斯性程度。我们的玻姆量子分析表明,导出的势在高频下取一些负值(其平均值),然后大幅增加,对于罕见事件,该值再次下降。因此,罕见事件可以在量子势的高频区域产生势垒,当系统横穿该势垒时,这种势垒的影响会变得突出。最后,作为将量子势应用于微观世界之外的一个例子,我们计算了标准普尔金融市场时间序列的量子势,以验证非高斯密度中罕见事件的存在,并证明与高斯情况的偏差。