表面和界面的电子结构对量子器件的特性起着关键作用。在这里,我们结合密度泛函理论与混合泛函以及最先进的准粒子引力波 (QSGW) 计算,研究了实际的 Al / InAs / Al 异质结的电子结构。我们发现 QSGW 计算和混合泛函计算之间具有良好的一致性,而后者本身与角分辨光电子能谱实验相比也非常出色。我们的论文证实,需要对界面质量进行良好的控制,才能获得 InAs / Al 异质结所需的特性。对自旋轨道耦合对电子态自旋分裂的影响的详细分析表明,k 空间中存在线性缩放,这与某些界面态的二维性质有关。QSGW 和混合泛函计算的良好一致性为可靠地使用 QSGW 的有效近似来研究非常大的异质结打开了大门。
protoelectronics设备固体中的能带,E-K图元素和化合物半导体半导体光电材料载体载体有效质量温度和压力的影响,压力和压力对带携带者对携带者的影响protoelectronics设备固体中的能带,E-K图元素和化合物半导体半导体光电材料载体载体有效质量温度和压力的影响,压力和压力对带携带者对携带者的影响
热力学与相变:热力学中的热和功的概念、热力学系统、热力学第零定律。温度概念、第一定律的微分形式、第二定律的陈述、熵的概念、焓。晶体的热力学函数和关系。相变和多相平衡。[10] 电子能带理论:能带理论、固体的经典自由电子理论、固体的索末菲量子自由电子理论、周期势的布洛赫波函数、克罗尼希-佩尼模型和能带。费米能量和费米面、电子的有效质量、布里渊区和倒易晶格。[10] 固体的电子特性:磁场下的传输方程、回旋共振、磁场下的能级和态密度。朗道抗磁性、自旋顺磁性、德哈斯范阿尔芬效应。磁阻、经典和量子霍尔效应。 [10] 教科书和/或参考资料
半导体器件物理学:平衡载流子浓度;热平衡和波粒二象性;本征半导体:键和能带模型;非本征半导体:键和能带模型,从允许的能量状态计算载流子浓度,状态密度和费米狄拉克统计,载流子传输;随机运动;漂移和扩散;迁移率、速度饱和、过剩载流子;注入水平;寿命;直接和间接半导体分析半导体器件的程序;基本方程和近似值
(这里 n = 0,1,2 …)表明存在具有 π Berry 相的狄拉克费米子 2,3,这反映了狄拉克点的拓扑性质。从那时起,许多其他类别的在其能带结构中具有狄拉克/韦尔节点特征的拓扑材料被预测和识别 4,5,在自旋电子学、光电子学和量子计算应用方面具有巨大潜力。然而,这些由两个能带或两个自旋极化能带分支交叉产生的狄拉克/韦尔点通常仅限于没有可利用带隙的半金属。在这项工作中,我们引入了一种新的半导体系统:碲烯(碲的二维 (2D) 形式),在导带最小值附近具有韦尔节点特征。二维极限下的拓扑材料和半导体的结合使我们能够以更可控的方式探索韦尔物理并设计拓扑器件。
MBenes 是二维 (2D) 材料中的一种新兴成员,因其独特的机械和电子特性以及多样化的晶体对称性和结构而备受关注,这些特性使其成为不同类型应用的有希望的候选材料 [1, 2]。然而,原始 MBenes 的固有金属性质可能会成为光学领域中涉及光子吸收、发射和电子学的多种应用的障碍。在半导体材料中,带隙是最重要的参数,人们投入了大量精力来寻找具有广泛带隙的新型纳米材料。虽然 MBenes 通常表现出金属行为,但可以通过能带工程将其调整为半导体。在这项工作中,ScB MBenes 的电子能带结构已利用表面功能化和应变电子学等能带工程技术进行了修改。我们研究了 ScB MBenes 的各种晶体对称性,并检查了它们的结构和动态稳定性。我们的结果表明,具有六方晶体对称性的 ScB 是最稳定的。我们已经研究了具有 O-、F-、OH- 和 H- 官能团的 ScB 的电子结构,并且能带结构计算表明,用 O 官能化的 ScB 在 DFT+U 和混合交换关联函数 HSE06 中分别具有约 0.1 eV 和 0.5 eV 的半导体带隙。除了用 O 官能化之外,施加的平面双轴应变还使带隙进一步增大了 0.8 eV。这可以使 ScBO MBene 充分利用电子、光学和其他多种应用。
周期性的 CDW 畸变通常会导致 CDW 能隙的打开。为了展示 CDW 能隙的形成,我们将 CDW 相的非磁性能带结构展开到原始布里渊区,并与正常相的能带结构进行了直接比较,如下图 S5(a) 和稿件中的图 2(c) 所示。可以看出,CDW 畸变使跨越费米能级的能带产生间隙,从而形成约 0.43 eV 的 CDW 能隙。我们进一步在图 S5(b)-(e) 中绘制了不同应变下 CDW 相的展开能带结构。可以清楚地看到,尽管 CDW 能隙的大小会随着施加的应变而变化,但它始终存在。如图 S5(f) 所示,当拉伸应变从 0% 增加到 4% 时,CDW 能隙从 0.43 eV 单调减小到 0.17 eV。在压应变作用下,CDW能隙首先在-1%应变时增大到0.50 eV,随后随着应变的增加而减小。CDW能隙尺寸的变化应该是CDW畸变幅度和CDW晶格常数变化共同引起的。需要注意的是,CDW能隙和Mott能隙是两个不同的物理量,前者直接来源于CDW畸变,而后者则受电子关联影响。因此,当施加的压应变大于某个临界值时,虽然CDW畸变和CDW能隙仍然存在,但是由于电子局域化的减弱,Mottness能隙会崩塌。
摘要:范德华 (vdW) 材料的垂直堆叠为二维 (2D) 系统的研究带来了新的自由度。层间耦合强烈影响异质结构的能带结构,从而产生可用于电子和光电子应用的新特性。基于微波显微镜研究,我们报告了门控二硫化钼 (MoS 2 )/二硒化钨 (WSe 2 ) 异质结构器件的定量电成像,这些器件在传输特性中表现出有趣的反双极效应。有趣的是,在源漏电流较大的区域,n 型 MoS 2 中的电子和 p 型 WSe 2 段中的空穴几乎平衡,而异质结构区域的移动电荷则耗尽。局部电导的空间演变可以归因于沿 MoS 2 − 异质结构 − WSe 2 线的横向能带弯曲和耗尽区的形成。我们的工作生动地展示了新传输行为的微观起源,这对于充满活力的范德华异质结研究领域非常重要。关键词:范德华异质结构、微波阻抗显微镜 (MIM)、反双极效应、能带排列、耗尽区
低功耗硅基光源和探测器因其易于工艺集成而对片上光子电路具有吸引力。然而,传统的硅发光二极管发射的光子能量接近能带边缘,而相应的硅光电探测器缺乏响应度。另一方面,以前报道的利用反向偏置二极管的热载流子电致发光硅器件需要高工作电压。在这里,我们研究了在瞬态电压条件下工作的硅金属氧化物半导体电容器中的热载流子电致发光。在每个电压瞬变期间,源接触边缘都会产生较大的能带弯曲,远大于稳定状态下可实现的能带弯曲。因此,电子和空穴在相应的电压瞬变下从单个源接触有效地注入硅通道,随后它们在那里经历碰撞电离和声子辅助带间复合。值得注意的是,我们通过使用 20 nm 厚的高 j 栅极电介质展示了低至 2.8 V 的低压操作。我们表明,通过减少栅极电介质厚度可以进一步实现电压缩放,从而为硅光电集成电路提供低压平台。
摘要。我们最近确定了石墨烯中受保护的拓扑半学,该拓扑半学表现为零能量边缘模式鲁棒和相互作用。在这里,我们解决了该半学的特征,并表明,与最低能带相关的霍尔电导率的Z拓扑不变,可以从谐振响应到在DIRAC点上分析的圆形极化光等效。中间能带(包括费米表面)的(非量化的)电导率响应也会引起z 2不变。我们强调散装的对应关系,作为受保护的拓扑半金属,即一个在平面中极化的自旋构型在与稳健边缘模式相关的绝缘阶段,而另一个则处于金属状态。边缘的量化运输等效于1 2 - 1