我们研究了使用量子最优控制在 87 Sr、ad = 10 维(四进制)希尔伯特空间中实现 I = 9 / 2 核自旋状态的幺正映射的能力。通过核自旋共振和张量交流斯塔克位移的组合,仅通过调制射频磁场的相位,该系统即可实现量子可控。碱土金属原子(例如 87 Sr)由于复合线较窄且激发态的超精细分裂较大,因此具有非常有利的品质因数。我们用数字方式研究了量子速度极限、最优参数以及任意状态制备和完整 SU(10) 映射的保真度,包括由于光移激光引起的光泵浦而产生的退相干。我们还研究了使用稳健控制来减轻由于光移不均匀性而导致的一些失相。我们发现,当 rf Rabi 频率为 rf 且光移不均匀性为 0.5% 时,我们可以在时间 T = 4.5 π/ rf 内制备任意 Haar 随机状态,平均保真度 ⟨ F ψ ⟩= 0.9992,并在时间 T = 24 π/ rf 内制备任意 Haar 随机 SU(10) 映射,平均保真度 ⟨ FU ⟩= 0.9923。
摘要:二维有机-无机卤化铅钙钛矿由于其光电特性(例如高太阳能转换效率和可见光区域可调的直接带隙)而引起人们的极大兴趣。然而,二维晶体结构中缺陷态的存在会影响这些特性,导致其带隙发射发生变化以及出现非线性光学现象。在这里,我们研究了缺陷态的存在对二维混合钙钛矿 (BA) 2 (MA) 2 Pb 3 Br 10 的非线性光学现象的影响。当两个脉冲(一个以 800nm 为中心的窄带泵浦脉冲和一个带宽为 800-1100nm 的超连续脉冲)入射到钙钛矿薄片上时,会发生简并四波混频 (FWM),其峰值对应于晶体中存在的缺陷态的能级。与非共振 FWM 过程中发生的虚拟跃迁相比,缺陷态的载流子寿命更长,这使得更多的电子能够被第二个泵浦光子激发,从而导致缺陷能级的 FWM 信号增强。随着薄片厚度的增加,双光子发光的猝灭现象也得到了观察,这归因于厚度较大时薄片内缺陷的存在增加。该技术展示了使用 FWM 检测晶体中缺陷能级的潜力,可用于各种光电应用。关键词:钙钛矿、非线性光学、材料、缺陷、荧光 ■ 简介
计算汉密尔顿量的能谱是量子力学中的一个重要问题。量子计算机的最新发展使人们认识到它们是解决这一问题的有力工具。量子相位估计 (QPE) 算法是确定汉密尔顿量特征值的算法之一 [1, 2, 3, 4, 5, 6]。该算法最初由 Kitaev、Lloyd 和 Abrams [1, 2, 3] 提出。该算法基于寻找特征值 λ = e iφ 或幺正算子的相位 φ。当幺正算子是量子系统演化的算子时,相位 φ 与汉密尔顿量的特征值相关。关于这个问题的简短综述可以在 [7] 中找到。在 [8] 中,提出了一种基于稳健相位估计算法估计跃迁能量的方法。此外,还已知可以检查能级的混合经典量子算法。其中包括量子近似优化算法(它识别出基态能量并用于解决优化问题 [9, 10, 11, 12]),变分量子特征值求解器(它识别出获得跃迁能量 [13, 14, 15, 16])。在 [17] 中,作者提出了一种有效的方法,用于根据演化算子期望值的时间依赖性来估计汉密尔顿函数的特征值。最初这个想法是在 [18] 中提出的。在 [19] 中,变分量子特征值求解器采用了量子比特有效的电路架构,并介绍了在量子计算机上研究量子多体系统基态特性的量子比特有效方案。在 [20] 中,描述了量子算法(量子 Lanczos,最小纠缠典型热态的量子类似物,最小纠缠典型热态的量子类似物),这些算法使得在量子计算机上检测基态、激发态和热态成为可能。在本文中,我们表明,研究物理量平均值的时间依赖性可以提取量子系统的跃迁能量。在物理量的算符与
碳基纳米结构可以根据其精确的键合结构显示出异常多样的特性。这包括石墨烯纳米带 (GNR),1-3 其中石墨烯晶格被限制为狭窄的一维条纹。具有扶手椅取向边缘的 GNR 显示出半导体带结构。相比之下,锯齿形甚至手性 GNR 是准金属的,并且会形成自旋极化边缘态,2-5 除非它们非常窄。在这种情况下,两侧的边缘态相互杂化,这会猝灭自旋极化并赋予带常规的半导体带结构。6,7 对于具有 (3,1) 手性矢量的带,维持准金属行为所需的最小宽度包括从一侧到另一侧的六条碳锯齿线。6 这一理论预测最近已通过合成和光谱表征 Au(111) 上不同宽度的 (3,1) 手性 GNR 得到实验证实。 8 然而,这些纳米带,就像纯锯齿状边缘的 GNR 9 或具有与周期性锯齿状边缘段相关的低能态的其他 GNR 10–12 一样,迄今为止仅在 Au(111) 上合成和表征。为了研究具有较低功函数的不同基底对纳米带电子特性的影响,我们在弯曲的 Ag 晶体 13 上合成了六条锯齿状线宽的 (3,1) 手性 GNR((3,1,6)-chGNR,图 1a),该晶体相对于中心 (111) 表面取向向两侧跨越高达 ±15 度的邻位角(图 1b)。整个晶体的合成都是成功的,但样品每一侧的不同类型的台阶对纳米带的优选方位角排列有不同的影响。这为我们提供了一个理想的样品,可通过角分辨光电子发射 (ARPES) 研究沿纳米带纵轴和垂直于纳米带纵轴的能带色散。我们使用的反应物是 2',6'-二溴-9,9':10',9”-四蒽 (DBTA,图 1a),合成方法见补充信息。8 它经过
利用其电子结构的特性来观察独特的物理现象,例如手性[15–17]和轴引力异常、[18]圆形光电效应、[19–20]手性声波、[21–22]表面态增强的埃德尔斯坦效应[23]或最近提出的手性霍尔效应。[24]大多数这些效应的观察取决于是否可以轻松访问WSM的拓扑电子态。在这方面,抑制非拓扑(平凡)表面态以及修改费米能级位置以获得所需费米面拓扑的能力将允许充分揭示拓扑表面态对物理可观测量的作用,此外,还可以按需构造费米面以利用电、声或光可测输出。到目前为止,电子结构的多样性是通过探索不同的 WSM 实现的,但对同一材料中拓扑能带形状和大小的真正控制仍然难以实现,主要是因为缺乏自下而上的超高真空合成方法,无法控制表面终止和费米能级位置,例如通过掺杂或应变。需要克服这一挑战才能实现费米能级设计的韦尔半金属异质结构,从而产生大量新平台来探索基于拓扑的基本现象和设备应用。在这项工作中,我们展示了 I 型韦尔半金属 NbP 电子结构的两种显著修改,这得益于成功的外延薄膜生长合成路线。 [25] 首先,由于表面悬空键被有序磷终端饱和,NbP 的蝴蝶结状(平凡)表面态被完全抑制,表现为(√2×√2)表面重构。其次,通过用 Se 原子化学掺杂表面,费米能级发生约 + 0.3 eV(电子掺杂)的大幅偏移,同时保留了原始的 NbP 能带结构特征,从而首次在实验中可视化了远高于 Weyl 点的拓扑能带色散,并强调了通过分子束外延过程中的表面化学掺杂可以实现的大费米能级可调性。我们的工作为实现最近的理论提议开辟了可能性,例如依赖于纯拓扑
掺铒GaN(Er:GaN)由于其优于合成石榴石(如Nd:YAG)的物理特性,是固态高能激光器(HEL)新型增益介质的有希望的候选材料。Er:GaN在1.5μm区域发射,该区域对视网膜是安全的并且在空气中具有高透射率。我们报告了对通过氢化物气相外延(HVPE)技术合成的Er:GaN外延层进行的光致发光(PL)研究。HVPE生长的Er:GaN外延层的室温PL光谱在1.5μm和1.0μm波长区域分别分辨出多达11条和7条发射线,这对应于GaN中Er3+从第一(4I13/2)和第二(4I11/2)激发态到基态(4I15/2)的斯塔克能级之间的4f壳层内跃迁。这些跃迁的观测峰值位置使得我们能够构建 Er:GaN 中的详细能级。结果与基于晶体场分析的计算结果非常吻合。精确确定 4 I 11/2、4 I 13/2 和 4 I 15/5 状态下斯塔克能级的详细能级对于实现基于 Er:GaN 的 HEL 至关重要。© 2020 作者。除非另有说明,否则所有文章内容均根据知识共享署名 (CC BY) 许可证获得许可(http://creativecommons.org/licenses/by/4.0/)。https://doi.org/10.1063/5.0028470
对与周期性或准周期性时间相关外部源相互作用的力学系统(经典或量子)的行为进行理论计算,需要对其在长时间内的行为进行非常好的控制。简单的解决方法可能会导致涉及长期项(依赖于时间的多项式增长项)或小分母(特别是在准周期相互作用下)的棘手问题。通常的数值积分方法在长时间内也可能不稳定,并会导致不受控制的误差。这些问题最早是在天体力学中发现的,在周期性或准周期时间相互作用下的物理系统中普遍存在。这些稳定性问题及其解决方案的分析是物理学和应用数学的一个广泛研究领域,并导致了重要的发展,如庞加莱-林德斯泰特级数和 KAM 理论。此类系统的微扰处理的主要目标是用依赖于时间的均匀收敛级数来表达物理上有意义的量,也就是说,用级数来表达,当截断时,与精确解的差异最多为一个固定的微小量,并且不会随时间而增加。量子相的计算是一种相关的物理情况,其中这种均匀的,即时间
已经提出了几种解决这个问题的方案。例如使用普朗克光谱 [ 1 , 2 ]、已知微波元件的散粒噪声 [ 3 ] 或与参考传输线相比的被测设备的散射参数 [ 4 – 6 ]。这些方法可能需要单独冷却或多次切换的低温标准,这会增加测量时间和不确定性,因为在重新组装微波线时参数不可避免地会发生变化。在使用超导量子比特或谐振器的实验中,通常使用电路特有的一些物理效应进行校准。例如,光子数已经通过交叉克尔效应 [ 7 ] 或通过量子比特腔系统的斯塔克位移进行了精确校准 [ 8 , 9 ]。后者已扩展到多级量子系统(qudits),以从更高级别的 AC 斯塔克位移中推断出未知信号频率和幅度 [10]。另一种方法是使用相位量子位作为采样示波器,通过测量通量偏差随时间的变化情况 [11]。其他方法适用于校正脉冲缺陷 [12,13]。最近一个有趣的提议是使用
我们报告了在 MgO 烟粉的开放体积内,正电子原子中 1 3 S 1 → 2 3 PJ 和 2 3 PJ → n 3 D / n 3 S 跃迁频率变化的测量结果。观察到的间隔大于相应的真空激发,但令人惊讶的是,跃迁到里德堡态受到的影响较小,并且能量变化与最终状态的主量子数 n 无关。我们将这些变化归因于 Ps 原子和 MgO 表面之间的共振相互作用,通过光谱重叠的 MgO 紫外 (UV) 光致发光吸收带介导。由于许多适用于 Ps 约束的绝缘材料表现出类似的宽带紫外吸收特性,观察到的现象对于光学诊断和激光冷却方案具有重要意义,这些方案与绝缘腔中高密度 Ps 集合的研究有关,包括 Ps 玻色-爱因斯坦凝聚态的生产。
我回顾了量子霍尔效应的替代模型的一些方面,该模型不基于无序势的存在。相反,在存在交叉电场和磁场的情况下,采用电子漂移电流的量化来构建非线性传输理论。替代理论的另一个重要组成部分是二维电子气与导线和施加电压的耦合。通过在外部电压固定 2D 子系统中的化学势的图像中工作,实验观察到的电压与量子霍尔平台位置之间的线性关系找到了自然的解释。此外,经典霍尔效应成为量子霍尔效应的自然极限。对于低温(或高电流),非整数子结构将较高的朗道能级分裂为子能级。电阻率中子结构和非整数平台的出现与电子-电子相互作用无关,而是由(线性)电场的存在引起的。一些结果分数恰好对应于半整数平台。
