已经提出了几种解决这个问题的方案。例如使用普朗克光谱 [ 1 , 2 ]、已知微波元件的散粒噪声 [ 3 ] 或与参考传输线相比的被测设备的散射参数 [ 4 – 6 ]。这些方法可能需要单独冷却或多次切换的低温标准,这会增加测量时间和不确定性,因为在重新组装微波线时参数不可避免地会发生变化。在使用超导量子比特或谐振器的实验中,通常使用电路特有的一些物理效应进行校准。例如,光子数已经通过交叉克尔效应 [ 7 ] 或通过量子比特腔系统的斯塔克位移进行了精确校准 [ 8 , 9 ]。后者已扩展到多级量子系统(qudits),以从更高级别的 AC 斯塔克位移中推断出未知信号频率和幅度 [10]。另一种方法是使用相位量子位作为采样示波器,通过测量通量偏差随时间的变化情况 [11]。其他方法适用于校正脉冲缺陷 [12,13]。最近一个有趣的提议是使用
主要关键词