摘要:本文报道了基于有限差分时域 (FDTD) 和有限元法 (FEM) 的介电谐振器材料测量装置建模的最新进展。与介电谐振器设计方法不同,介电谐振器设计方法使用贝塞尔函数的解析展开来求解麦克斯韦方程,而本文仅使用解析信息来确保场的固定角度变化,而在纵向和径向方向上应用空间离散化,从而将问题简化为 2D。此外,当在时域中进行离散化时,全波电磁求解器可以直接耦合到半导体漂移扩散求解器,以更好地理解和预测基于半导体的样品的谐振器的行为。本文将 FDTD 和频域 FEM 方法应用于介电样品的建模,并根据 IEC 规范规定的 0.3% 范围内的测量结果进行验证。然后采用内部开发的耦合多物理场时域 FEM 求解器,以考虑电磁照明下的局部电导率变化。由此展示了新方法,为介电谐振器测量的新应用开辟了道路。
石墨烯和相关的二维(2D)材料相关的机械,电子,光学和语音性能。因此,对于将其基本激发(激发子,声子)与宏观机械模式搭配的混合系统来说,2D材料是有希望的。与较大的架构相比,这些内置系统可能会产生增强的应变介导的耦合,例如,包括一个与纳米机械谐振器耦合的单个量子发射极。在这里,使用微拉曼光谱法对原始的单层石墨烯鼓上的鼓,我们证明了石墨烯的宏观膨胀振动诱导动力学光学声子软化。这种软化是动态诱导的拉伸应变的明确填充物,在强的非线性驾驶下达到了≈4×10-4的值。这种非线性增强的应变超过了具有相同根平方(RMS)幅度的谐波振动预测的值,多个数量级。我们的工作对2D材料和相关异质结构中光 - 物质相互作用的动态应变工程和动态应变介导的控制有望。
“许多研究小组都表明他们可以将非常非常小的事物纠缠到单一电子。,但在这里我们可以证明两个巨大的物体之间的纠缠。“我们在这项研究中证明的第二件事是我们的平台可扩展。如果您可以想象构建一个大量子处理器,我们的平台将就像一个单元格。”
和处理7,范围8,微波光子学9,双弯曲光谱学10和天文学光谱仪校准11。这些孤子作为Lugiato – Lefever方程的局部溶液12,13(LLE)出现,可以在具有高质量因素的谐振器中观察到。CSS的出现依赖于一侧异常的群体色散(GVD)和Kerr非线性之间的双重平衡,以及在另一侧的损耗和能量注入(通常是通过连续波(CW)激光泵)之间的双重平衡。由于它们的高质量因子和紧凑的设计(数百微米的空腔长度),微孔子在过去十年中引起了显着的注意力。De- spite these impressive performances, launching and collect- ing light in these resonators can be challenging, requiring ad- vanced fiber coupling devices such as a prism fiber taper 15 or advanced coupling methods for chip microresonators 16 , and while progresses on packaging are on going, it is still an ob- stacle for fiber applications.在谐振器中产生OFC的另一种方法是,在长度为117米的全纤维环腔中,其有效质量因子可以通过在腔体18中包括一个放大器来达到数百万。使用这些谐振器架构获得的光谱延伸到几个THZ上,几乎就像微孔子一样,但它们具有两个主要缺点。首先,线间距在MHz范围内,该范围限制了应用程序范围(主要在GHz范围14中),其次,它们不是Com-
摘要 混沌系统具有复杂且不可再现的动力学,在自然界中随处可见,从行星之间的相互作用到天气的演变,但也可以使用当前的先进信号处理技术进行定制。然而,由于底层物理涉及动力学,混沌信号发生器的实现仍然具有挑战性。在本文中,我们通过实验和数值方法提出了一种从微机械谐振器生成混沌信号的颠覆性方法。该技术通过调节施加到非线性区域中谐振器的驱动力的幅度或频率,克服了控制微/纳米机械结构中屈曲的长期复杂性。混沌状态的实验特征参数,即庞加莱截面和李雅普诺夫指数,可直接与不同配置的模拟进行比较。这些结果证实,这种动态方法可转换到任何类型的微/纳米机械谐振器,从加速度计到麦克风。我们通过将现成的微隔膜转变为符合美国国家标准与技术研究所规范的真正随机数生成器,展示了利用混沌状态的混合特性的直接应用。这种原始方法的多功能性开辟了新的途径,将混沌的独特性质与微结构的卓越灵敏度相结合,从而产生新兴的微系统。
摘要 — 从硅上外延生长的氮化镓 (GaN) 开始,设计、制造并表征了集成压电换能器的预应力微谐振器。在夹紧梁中,众所周知,拉伸应力可用于增加谐振频率。在这里,我们计算了预应力梁中平面外弯曲模式的模态函数,并推导出一个模型来预测谐振频率和压电驱动因子。我们表明,理论和实验结果之间可以获得良好的一致性,并推导出机电转换的最佳设计。最后,我们的模型预测了由于拉伸应力导致的品质因数增加,这已通过真空下的实验测量得到证实。这项研究展示了如何利用外延工艺产生的材料质量和初始应力。
如今,基于石英谐振器的参考振荡器的工作频率被限制在几百兆赫。从这样的参考振荡器中获取千兆赫范围的信号需要倍频或频率合成。然而,倍频过程会根据倍频系数的 20log 10 增加输出信号的相位噪声,同时也会增加电路的复杂性。从这个意义上讲,直接在毫米 (mm-) 波段的基频上产生 LO 信号是有利的。然而,这需要一个高质量 (Q-) 因子谐振器,最好在几千兆赫下工作。采用金属腔的传统无源谐振器的 Q 因子受到金属中的电阻损耗的限制。或者,基于陶瓷谐振器的直接在基频下工作的振荡器提供平均相位噪声,并且通常在 25 GHz 以上不可用。
图1。各种石墨烯纳米力学谐振器。(a)双重夹紧谐振器。(b)完全夹紧的谐振器。(c)带有通向通道的完全夹紧谐振器。(d)使用SU-8聚合物的其他层完全夹紧谐振器。(e)蹦床形的谐振器。(f)H形谐振器。(g)单独夹紧谐振器。(h)三个双重夹紧的谐振器串联。(i)哑铃形的谐振器,中间有一个排气通道。(J)大量的鼓声谐振器。(k)语音晶体通过将悬浮的石墨烯膜变成周期性图案。(l)语音晶体将石墨烯薄片转移到预制的立柱阵列中。(a)经许可复制。[19] 2011年版权所有,施普林格。(b)经许可复制。[57]版权所有2018,美国化学学会。(c)根据创意共享CC-BY国际许可证的条款复制。[61]版权所有2020年,作者,由Springer Nature出版。(d)经许可复制。[26]版权所有2013,施普林格。(e)根据创意共享CC-BY国际许可证的条款复制。[64]版权所有2019,作者,由施普林格自然出版。(f)经许可复制。[65]版权所有2015,美国化学学会。(g)经许可复制。[66]版权所有2012,施普林格。(h)根据创意共享CC-By International许可证的条款复制。[23]版权所有,作者,由美国国家科学院出版。(i)根据创意共享CC-NC-ND国际许可证的条款复制。[67]版权所有2021,作者,由美国化学学会出版。(J)经许可复制。[68]版权所有2011,施普林格。(k)根据创意共享CC-BY国际许可证的条款复制。[35]版权所有2021,作者,由美国化学学会出版。(l)经许可复制。[36]版权所有2021,美国化学学会。
基于Znmgo薄膜的光学微孔谐振器(MRR)在从紫外线到近红外的波长范围内的激光频率转换和电气调制的新型光子设备展开了独特的潜力。在这项工作中,我们探讨了通过光子damascene工艺制备的Znmgo光学MRR的耦合系数(κ)对环的间隙(g)和radius(r)的依赖性。通过调整G和R值,可以实现从0.29到0.78的κ范围。模拟和实验结果都表明,κ随着g或/和增加R.的增加而增加。此外,κ对MRR的结合态和共振峰深度具有显着影响。这些发现将Znmgo光学MRR铺平了在Si上的各种紧凑的非线性光子设备上。
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。高Q超级导电遣返器,并将其视为由假设的轴突ole介导的逐灯散射的检测器。量子电动力学:Euler -Heisenberg(EH)相互作用。光子频率和模式转换对于检测这种罕见的E V的方案至关重要。超级传导遣返器的非导纳设备。将电磁场限制在超导RF腔的真空区域的Meissner scr频率是EM场在真空– Superpocducducductionfucting界面处的非线性函数,因此可以产生CAV-ITY中微型光照射子的频率转换。在本报告中,我们考虑了具有高质量因子的光子频率和模式转换,该谐振器具有高质量的因子,来自Meissner电流的单个和双腔内电流中的高质量因素,该谐振器提出了基于光线散射的轴和QED搜索。在具有两个泵模式的单个腔中,Meissner筛选的光子频率转换率在Q≲1012的腔中通过EH相互作用来主导光子的产生。Meissner电流还生成背景光子,以限制三模式单腔设置中的轴轴检测的操作。我们还考虑将光子从泵模式泄漏到轴和EH介导的光线散射的信号模式中。EH相互作用通过EH相互作用的光子频率转换可以与Meissner竞争,并在超高Q型腔中的泄漏辐射和泄漏辐射范围内,这超出了当前最新技术状态。Meissner辐射和泄漏背景可以在双腔设置中抑制具有适当选择的泵和观众模式的选择,以及针对杂差检测银河系轴线暗物质的单腔设置。