从历史上看,随着商用双向无线电用户数量的增长,信道间隔不断缩小,必须分配更高频率的频谱来满足需求。更窄的信道间隔和更高的工作频率需要更严格的频率公差,无论是发射器还是接收器。1940 年,当只有几千台商用广播发射机在使用时,500 ppm 的公差就足够了。今天,数百万部蜂窝电话(工作在 800 MHz 以上的频段)中的振荡器必须保持 2.5 ppm 或更高的频率公差。896-901 MHz 和 935-940 MHz 移动无线电频段要求基站的频率公差为 0.1 ppm,移动站的频率公差为 1.5 ppm。容纳更多用户的需求将继续要求越来越高的频率精度。例如,NASA 的个人卫星通信系统概念将使用类似对讲机的手持终端、30 GHz 上行链路、20 GHz 下行链路和 10 kHz 信道间隔。终端的频率精度要求是 10 8 的几分之一。
从历史上看,随着商用双向无线电用户数量的增长,信道间隔不断缩小,必须分配更高频率的频谱才能满足需求。更窄的信道间隔和更高的工作频率需要更严格的频率公差,无论是发射器还是接收器。1940 年,当只有几千台商用广播发射机在使用时,500 ppm 的公差就足够了。今天,数百万部蜂窝电话(工作在 800 MHz 以上的频段)中的振荡器必须保持 2.5 ppm 或更高的频率公差。896-901 MHz 和 935-940 MHz 移动无线电频段要求基站的频率公差为 0.1 ppm,移动站的频率公差为 1.5 ppm。容纳更多用户的需求将继续要求越来越高的频率精度。例如,NASA 的个人卫星通信系统概念将使用类似对讲机的手持终端、30 GHz 上行链路、20 GHz 下行链路和 10 kHz 信道间隔。终端的频率精度要求是 10 8 的几分之一。
在本文档的 PowerPoint 版本中,注释和参考资料可以在大多数页面的“注释”中找到。要查看注释,请使用“注释页面视图”图标(靠近屏幕左下角),或在视图菜单中选择“注释页面”。在 PowerPoint 2000(以及可能更高版本)中,注释也显示在“普通视图”中。要打印页面以使其包含注释,请在文件菜单中选择打印,然后在底部的“打印内容:”处选择“注释页面”。可以使用 Web 浏览器查看 HTML 版本(最佳显示尺寸为 1024 x 768)。注释随后显示在右侧下方窗格中。许多参考资料来自 IEEE 出版物,可在 IEEE UFFC-S 数字档案馆 www.ieee-uffc.org/archive 或 IEEE Xplore http://www.ieee.org/ieeexplore 中在线获取。
Rainer Kaltenbaek 1、2*†、Markus Arndt 3、Markus Aspelmeyer 2、3、Peter F. Barker 4、Angelo Bassi 5、6、James Bateman 7、Alessio Belenchia 8、9、Joel Berg´e 10、Claus Braxmaier 11、12、Sougato Bose 4、Bruno Christophe 10、Garrett D. Cole 13、14、Catalina Curceanu 15、Animesh Datta 16、Maxime Debiossac 2、Uroˇs Deli´c 3、Lajos Di´osi 17、18、Andrew A. Geraci 19、Stefan Gerlich 3、Christine Guerlin 20、Gerald Hechenblaikner 21、 Antoine Heidmann 20 , Sven Herrmann 22 , Klaus Hornberger 23 , Ulrich Johann, Nikolai Kiesel 3 , Claus L¨ammerzahl 22 , Thomas W. LeBrun 24 , Gerard J. Milburn 25 , James Millen 26 , Makan Mohageg 27 , David C. Moore 28 , Gavin W. Morley 16 , Stefan Nimmrichter 29 , Lukas Novotny 30 , 31 , Daniel KL Oi 32 , Mauro Paternostro 9 , C. Jess Riedel 33 , Manuel Rodrigues 10 , Lo¨ıc Rondin 34 , Albert Roura 12 , Wolfgang P. Schleich 12 , 35 , 36 , 37 , Thilo Schuldt 12 , Benjamin A. Stickler 23 、Hendrik Ulbricht 38 、Christian Vogt 22 和 Lisa W¨orner 12
N. Didier 等人,从纵向量子比特振荡器相互作用实现快速量子非破坏性读出,PRL 115, 203601 (2015) P.-M. Billangeon 等人,基于电路 QED 的可扩展架构,用于使用超导量子比特进行量子信息处理 PRB 91, 094517 (2015)
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。高Q超级导电遣返器,并将其视为由假设的轴突ole介导的逐灯散射的检测器。量子电动力学:Euler -Heisenberg(EH)相互作用。光子频率和模式转换对于检测这种罕见的E V的方案至关重要。超级传导遣返器的非导纳设备。将电磁场限制在超导RF腔的真空区域的Meissner scr频率是EM场在真空– Superpocducducductionfucting界面处的非线性函数,因此可以产生CAV-ITY中微型光照射子的频率转换。在本报告中,我们考虑了具有高质量因子的光子频率和模式转换,该谐振器具有高质量的因子,来自Meissner电流的单个和双腔内电流中的高质量因素,该谐振器提出了基于光线散射的轴和QED搜索。在具有两个泵模式的单个腔中,Meissner筛选的光子频率转换率在Q≲1012的腔中通过EH相互作用来主导光子的产生。Meissner电流还生成背景光子,以限制三模式单腔设置中的轴轴检测的操作。我们还考虑将光子从泵模式泄漏到轴和EH介导的光线散射的信号模式中。EH相互作用通过EH相互作用的光子频率转换可以与Meissner竞争,并在超高Q型腔中的泄漏辐射和泄漏辐射范围内,这超出了当前最新技术状态。Meissner辐射和泄漏背景可以在双腔设置中抑制具有适当选择的泵和观众模式的选择,以及针对杂差检测银河系轴线暗物质的单腔设置。
摘要 — 微谐振器调制器通常用作硅光子学平台计算系统中的电光 (EO) 逻辑门。在本文中,我们提供了一个紧凑的分析模型来描述线性级联微谐振器调制器阵列的开关特性。通过商业软件上的模拟验证了该分析模型。研究了不同调制条件下微谐振器的开关特性。此外,还讨论了微谐振器调制器串联的计算模块,其中微谐振器的模型由 AIM 光子学工艺设计套件 (PDK) 提供。分析了导致逻辑输出恶化的因素,并提出了提高逻辑输出精度的方法,并用 8 个微谐振器调制器进行了演示。
平面超导传输线谐振器可以在多个谐波共振频率下操作。这允许涵盖具有高灵敏度的广泛光谱状态,例如对于低温微波光谱。这种实验的常见并发症是存在不希望的“虚假”其他共振,这是由于谐振器基板或外壳框中的站立波。识别单个共振的性质(“设计”与“伪造”)对于更高的频率或如果包括未知材料特性的元素,那么对于微波光谱而言,可能会变得具有挑战性。在这里,我们讨论了各种实验策略,以区分共面超导谐振器中设计和虚假的模式,这些谐振器以高达20 GHz的频率范围运行。这些策略包括跟踪共振演变与温度,磁场和微波功率的函数。我们还证明了谐振器的局部修饰,通过应用微量的介电或电子自旋谐振材料,可导致各种共振模式中的特征性特征,具体取决于电或磁性微波场的局部强度。