过程控制、污染监测和即时诊断的需求推动了化学和生化传感器的发展以及传统分析方法的改进。传感器的发展趋势是小型化、阵列并行化、降低检测限以及与化学计量学方法相结合,以应对新的分析应用领域。几年前,光学和电分析技术取得了突破性进展,此后,生化和化学传感器的传导方法的新颖性逐渐消退,创新动力正在减弱。尽管如此,识别元素的新策略以及能够测量样品中最小体积的极低浓度以监测细胞内过程的兴趣,增加了人们对进入传感新领域的兴趣[1]。量子计算的最新成功影响了工业 4.0 中一个领域的发展——量子传感的发展[2]。量子计算机最常用的方法是基于量子比特的量子电路,这与经典的量子态方法不同。与传统方法不同,量子比特系统并不处于确定的状态——它是 0 和 1 两个状态的平均值,根据量子力学,它可以是两者的相干叠加。测量量子比特会破坏这种相干性。此外,两个相互作用或具有特殊接近度的粒子可以表现出量子纠缠等物理现象;即使相距很远,在这种情况下也无法独立描述每个粒子的量子态。这种系统的可能实现是带电离子或自旋量子比特。带电离子对电场敏感,而基于自旋的系统主要对磁场作出反应。然而,两者都表现出所谓的内在敏感性,即它们表现出
主要关键词