以限电模式运行的光伏系统可能会提供新的服务。它们可以在限电模式下运行,例如提供对称电力灵活性、有功功率设定点运行或能量储备,从而为电网稳定性做出额外贡献。根据所应用的控制系统,它们可用于减少预测误差或补偿意外的负载或生产变化。这种光伏限电模式在岛屿电力系统中可能更有价值,因为岛屿电力系统的电网频率通常不如大型互联大陆电网稳定。
摘要 本研究旨在确定非传统船舶电力系统中使用太阳能电池的效率。研究中将使用的方法将使用原始数据和次要数据,这将为本研究提供全面的方法。基于上述分析,带有太阳能电池的系统每天可以产生 Wh 的能量,以满足每天使用的 Wh 瓦特的能源需求。通过使用电池容量,该系统具有非常大的能量储备,允许系统每天使用,并且将非常有效地满足负载需求,具有过剩的能量容量。如果发电机的瓦数足以满足现有负载的每日能源需求,这意味着发电机中可以储存多余的能量。
问题概述 每年有数百万只鸟因高层建筑、导航信标、通讯塔和其他照明设施的户外照明而死亡。夜间人造光 (ALAN) 的吸引力会导致鸟类死亡,当候鸟被“捕获”时,它们会绕着光源转圈直到精疲力竭或与障碍物和其他鸟类相撞。户外照明的间接影响包括局部栖息地丧失或繁殖生产力下降以及与 ALAN 相关的导航错误导致能量储备耗尽,最终会影响生存和生产力。本情况说明书描述了 ALAN 对鸟类的捕获及其诱发因素,然后总结了最佳管理实践,并参考了将指导减少 ALAN 对个人、种群和脆弱物种影响的政策工具。
摘要 - 该论文提出了一种为低功率大动力的机器人群设计的能源管理模型(EMM),除了传统的充电方法外,还从环境中收集能量。EMM旨在与调度体系结构合作,该架构可以协调整个动力的群体机器人(APSR)的任务。此模块可以帮助调度程序对机器人的储能和消耗更加灵活地控制。所提出的EMM的关键功能包括对能级的实时监控,低功率的可安排空闲模式,监视有效的能量收集机制,死电器机器人恢复以及提供机器人的硬重置能力。该模块为机器人提供了额外的低功率无线连接。与EMM合作,调度程序可以管理整个群体上的能源消耗,并防止单个机器人以空闲模式,死电池模式和故障耗尽其能量储备。为了验证EMM的有效性,实验在模拟和现实世界环境中都进行了进行,使任务耐力,任务完成率和整体群体绩效的改善进行了改善。结果表明,与基线方法相比,EMM有效地延长了任务持续时间并提高了操作效率。索引术语 - 能源管理模块,机器人群,能量感知调度,机器人恢复
睡眠对身心健康至关重要。睡眠不足或睡眠剥夺会导致血压升高 [1]、体重增加 [2、3]、糖尿病和心脏病风险增加 [4-6] 以及免疫系统功能障碍 [7]。就心理健康而言,睡眠问题(嗜睡症或失眠症)是许多精神疾病的特征,尤其是痴呆、精神分裂症、躁郁症、重度抑郁和焦虑症 [8-11]。睡眠具有多种功能,包括恢复大脑能量储备 [12、13]、清除清醒状态下的代谢副产物 [14-16] 以及维持注意力和记忆功能 [17-20]。一些研究已经探讨了睡眠与大脑结构之间的关系。 Lifebrain 联盟 (N = 1299) [21] 的研究表明,睡眠质量较低和存在睡眠问题与一生中海马体积减小有关,而 Framingham 心脏研究 (N = 2060) [22] 的研究表明,较长的睡眠时间与整体大脑体积较低有关。对于人类连接组计划 (N = 974) 的一个子样本,较短的睡眠时间及较差的睡眠质量与扣带回、中颞叶及眶额皮质部分皮质内髓鞘含量较低有关 [23]。在几个较小规模的研究中,
歇斯底里的发展随着个体的年龄,不可避免的身体下降,部分受到生活方式选择的影响,例如饮食不良和缺乏运动,而不是仅仅受老化过程的影响。能量储备会减少,细胞经历衰减,肌肉质量减少。免疫系统在防御疾病方面变得不那么强大,包括心脏和肺在内的各种身体系统和器官的效率降低。尽管人们尽了最大的努力,但老化会导致总体下降,从而增加了对感染和疾病的敏感性。诸如心脏和肌肉骨骼系统等器官的变化有助于这种增加的脆弱性。此外,耐力,力量,柔软,流动性和精细运动技能逐渐减弱,影响协调和敏捷。成年后期的认知发展,认知发展发生了变化。认知,涵盖思维过程,促进了新信息的保留和理解,经验改变。认识,记忆,判断,解决问题以及在持续时间内对刺激的关注是这些认知过程的一部分。成年后,记忆和关注下降。但是,积极参与认知活动和持续的学习工作可以减轻衰老对认知发展的影响。有关衰老和认知的新研究,可以训练大脑以建立认知储备以减少正常衰老的影响吗?这些参与者(非裔美国人的26%)获得了10主动(对独立老年人的高级认知训练),这项研究于1999年至2001年之间进行了一项研究,其中2,802个人65至94岁,表明答案是“是”。
住宅规模电池的技术进步为自给自足社区铺平了道路,使社区能够充分利用其光伏系统来满足当地的能源消费需求。为了有效利用电池的功能,社区可以参与提供短期运营储备 (STOR) 服务。为此,在规定的时间窗口内,电池中要保持足够的能量储备,以供电力系统运营商使用。然而,这可能会降低社区的能源自给自足程度。此外,实际的储备交付可能会造成配电网络拥塞。为了充分了解社区提供储备的能力,本研究提出了一种住宅社区能源管理系统,该系统采用混合整数线性规划 (MILP) 模型。该模型旨在通过优化电池调度来最大限度地提高能源自给自足程度,同时考虑储备约束。该模型还使用迭代方法将房屋的总功率保持在离线定义的出口/进口限制范围内,以确保储备供应不会违反配电网络限制。该模型在住宅社区进行了演示。确定了对能源自给自足影响最小的最大承诺储备功率。结果还表明,除非充分考虑配电网络的限制,否则社区提供储备的能力可能会被高估。
电动垂直起飞和降落(EVTOL)飞机部署的关键方面是所使用的电池的安全性和性能能力。安全要求的一个组成部分是需要储备能源,只有在紧急情况下才能使用。在文献中,已经观察到应限制电池能量储备区域的下限,以避免发生急剧下降电压下降的区域。在此,提出了一种定义下限的方法。这旨在延长飞机可以在登陆不再完成之前巡航的时间。一种新型的功率能力测试程序用于测量可以完成恒定功率脉冲的最低电荷(SOC)。这与在预定的SOC点执行脉冲的现有功率能力测试不同。提出的方法的目标是复制着陆条件,以了解低SOC的功率能力性能。对各种环境条件和用例进行了测试,包括温度和功率脉冲以及两组不同老化的细胞。对于定义的测试条件,日历老年细胞的最低SOC值范围为6%至14%,而循环老化细胞的范围为8%至27%SOC。该测试的结果是一个特征图,将温度,脉冲功率和脉冲持续时间与最低SOC相关联。特征图指示需要在需要执行降落之前允许电池的最低SOC值。将特征图的精度与从测试数据参数参数的电池等效电路模型进行了比较。根据一组先前未测量的实验条件对定义的方法进行了实验验证。总体而言,与测量值相比,特征图提供了良好的精度,而MAP和模型方法的平均最大绝对百分比误差最多为7.5%。此外,测试结果表明,如果将最坏情况的降落场景用作储备区的下限,则如果不考虑细胞降解,则可用的名义飞行的可用SOC范围将受到很大的影响。
摘要:负能量平衡是指估计的能量需求不足。围产期能量需求增加和干物质摄入量减少导致奶牛进入负能量平衡状态。这是奶牛在过渡期(即产犊前三周和产犊后三周左右)常见的问题。奶牛对与血糖和胰岛素浓度降低有关的负能量平衡的反应是增加体内能量储备(主要是糖原、脂肪和蛋白质)的动员以补偿其能量需求。脂肪动员增加(脂肪分解)导致血液中非酯化脂肪酸升高。在肝脏中,这些非酯化脂肪酸重新酯化为三酰甘油或被氧化形成能量体或酮体。虽然这些变化是高产奶牛的正常适应过程,但当奶牛无法适应这种代谢挑战时,就会发生多种代谢和感染性疾病,并影响过渡期后的生产和繁殖效率。所有这些挑战的综合影响是生育能力和产奶量下降,导致过渡期后的利润减少。为了评估能量平衡,我们可以估计血清中的葡萄糖和非酯化脂肪酸浓度。静脉注射 50% 葡萄糖溶液,必须重复 2-4 天,可用于治疗负能量平衡。为了进行适当的管理,应始终正确配制饮食以满足高水平产奶的能量和蛋白质需求。还应注意舒适的围栏或牛棚设计、提供足够的干燥垫料和良好的立足点。因此,本研讨会论文的目的是回顾负能量平衡对过渡期奶牛的影响,并提出一些管理方案以减少影响。[Kebadu Endeg 和 Negesse Welde。过渡期奶牛负能量平衡综述及管理方案。J Am Sci 2021;17(2):1-11]。ISSN 1545-1003(印刷版); ISSN 2375-7264(在线)。http://www.jofamericanscience.org 。1. doi: 10.7537/marsjas170221.01 。关键词:奶牛,干物质摄入量,负能量平衡,非酯化脂肪酸,过渡期 1. 简介