摘要 — 高能电子与物质相互作用产生的辐射簇射包括能量分布峰值为 MeV 级的中子,这些中子是通过光核反应产生的,可以测量电子设备中中子诱导的单粒子效应 (SEE)。在这项工作中,我们研究了一种装置,其中欧洲核子研究中心 [Centre Européen pour la Recherche Nucléaire (CERN)] 的 CLEAR 加速器的 200 MeV 电子束被引导到铝靶上以产生具有大中子分量的辐射场。通过测量特性良好的静态随机存取存储器 (SRAM) 中的单粒子翻转 (SEU) 和闩锁率以及被动式无线电光致发光 (RPL) 剂量计中的总电离剂量 (TID),并将结果与 FLUKA 模拟的预测进行比较,对由此产生的环境进行了分析。我们发现,用铅制成的横向屏蔽可保护 SRAM 免受过高的 TID 率影响,从而为 SEU 测量提供最佳配置,尤其是在对 MeV 级中子高度敏感的 SRAM 中。相对于基于散裂靶或放射源的标准中子设施,此设置提供了一种有趣的补充中子源。
发展了一种通过测量近火星空间中氢能中性原子(H-ENA)反演太阳风参数的算法。假设H-ENA是由太阳风中的质子与外大气层中性子发生交换碰撞而产生的,在磁流体力学(MHD)模拟太阳风与火星相互作用的基础上,建立了H-ENA模型,研究了H-ENA的特性。结果表明,太阳风H-ENA与太阳风一样,是高速、低温的粒子束,而磁鞘H-ENA速度较慢、温度较高,能量分布较广。假设太阳风H-ENA通量服从麦克斯韦速度分布,高斯函数最适合拟合太阳风H-ENA通量,由此可以反演太阳风的速度、密度和温度。进一步基于H-ENA模型模拟的ENA通量研究表明,反演太阳风参数的精度与ENA探测器的角度和能量分辨率有关。最后,利用天问一号任务的H-ENA观测数据验证了该算法。反演后的上游太阳风速度与原位等离子体测量结果接近。我们的结果表明,从H-ENA观测数据反演的太阳风参数可以作为火星空间环境研究数据集的重要补充,因为火星空间环境研究缺乏对上游SW条件的长期连续监测。
由于 III-N 材料体系的独特性质,AlGaN/GaN 基异质结构可用于制造高电流 (> 1 A/mm [1, 2]) 和高功率 (> 40 W/mm [1]) 的高电子迁移率晶体管和肖特基势垒二极管等器件。此类结构中二维电子气 (2DEG) 浓度的典型值为 N s = 1.0–1.3·10 13 cm -2,电子迁移率 μ ~ 2000 cm 2 V -1 s -1 。通过增加势垒层中的 Al 摩尔分数进一步增加浓度会受到应变弛豫的阻碍 [3]。此外,当 2DEG 密度增加时,2DEG 迁移率通常会大幅下降 [4],因此电导率保持不变甚至变得更低。使用具有多个 2DEG 的多通道设计的结构可能是实现更高电导率的替代方法 [5, 6]。有关 GaN 多通道功率器件的进展、优点和缺点的更多详细信息,请参阅最近的评论文章 [6]。这种设计能够在不降低迁移率的情况下增加总电子浓度。然而,强的内部极化电场会导致导带能量分布发生显著改变,因此一些无意掺杂的结构的通道可能会完全耗尽,总电导率会明显低于预期。另一方面,向势垒层引入过多的掺杂剂可能会导致寄生传导通道的形成。因此,需要优化设计。在本文中,我们研究了单通道和三通道 AlGaN/AlN/GaN 异质结构的设计对其电学性能的影响。
高能离子的非弹性能量沉积是许多工业规模应用(如溅射和离子注入)的决定性量,但其由动态多粒子过程控制的底层物理通常仅被定性地理解。最近,对单晶靶材进行的透射实验(Phys. Rev. Lett. 124, 096601 和 Phys. Rev. A 102, 062803)揭示了沿不同轨迹的低能离子(比质子重)的非弹性能量损失的复杂能量缩放。我们使用类似蒙特卡洛的二元碰撞近似代码,并配备与撞击参数相关的非弹性能量损失模型,以评估这些情况下局部贡献对电子激发的作用。我们将计算出的轨迹的角强度分布与实验结果进行了比较,其中 50 keV 4 He 和 100 keV 29 Si 离子在飞行时间装置中传输通过单晶硅 (001) 箔(标称厚度分别为 200 和 50 nm)。在这些计算中,我们采用了不同的电子能量损失模型,即轻弹丸和重弹丸的局部和非局部形式。我们发现,无论晶体相对于入射光束的排列如何,绝大多数弹丸最终都会沿着它们的轨迹被引导。然而,只有当考虑局部电子能量损失时,模拟的二维图和能量分布才会与实验结果高度一致,其中引导会显著减少停止,特别是对于较重的弹丸。我们通过评估离子范围与随机表面层厚度的非线性和非单调缩放来证明这些影响与离子注入的相关性。
可以说,电子衍射的发现是由伽利略开创的。但我并不打算效仿这位以伊甸园事件为起点讲述家乡历史的绅士。我将以导致物理学家最终接受光在某些用途上必须被视为粒子这一观点的事件作为一个方便的起点。这一观点在 1800 年被托马斯·杨平息后,又在 1899 年再次困扰着自满的物理学界。这一年,马克斯·普朗克提出了光能在某种程度上是量子化的这一观点。正如他所展示的那样,这一观点如果被接受,将提供一种完全解释黑体辐射光谱中能量分布的方法。这种量化使得辐射和物质之间的能量转移以与辐射频率成比例的量突然发生。这些量之间的比例因子是不断重复的普朗克常数 h。因此,光在某种意义上是微粒的想法重生了。这种关于光的微粒方面的间接证据是否能被接受为结论,仍是一个猜测的问题,因为已经从实验室的秤和仪表中取下了指向同一结论的第一批直接证据;关于光的真相正在从大自然中逼出——有时,在这种情况下,是一个最不情愿的证人。
减轻运输部门的污染需要部署零排放解决方案,例如电动汽车(EV)。电动汽车的一个重大挑战是电池的寿命有限,一个钥匙和昂贵的组件。为了避免此问题,潜在的解决方案在于电池与超级电容器的整合以创建混合储能系统(HESS)。这种组合显然可以降低电池的峰值电流,从而延长其寿命,并最终导致电动汽车的长期成本效益。HESS的关键组成部分是能源管理策略(EMS),其任务是优化能量分布。低通滤波器(LPF)用作简单的实时EMS。当前的研究介绍了一种新的方法,用于确定LPF的最佳截止频率,该方法用微调(RPFT)称为Ragone图。Ragone图为电池和驱动周期提供了一般的截止频率,同时采用微调来优化它。仿真结果表明,RPFT方法的表现优于快速傅立叶变换(FFT)方法,从而证明了其功效。RPFT的应用导致电池峰值电流和电池电流均方根(BCRMS)的降低分别减少了29.80%和9.99%。本研究提供了改善电动汽车能源管理的宝贵见解,并强调了RPFT方法在延长电池寿命并提高电动汽车的成本效益方面的潜力。
带有轨道角动量(OAM)的涡流梁对于高容量通信和超分辨率成像具有重要意义。但是,芯片上的自由空间涡旋(FVS)和等离子涡旋(PVS)之间存在巨大差距,而主动操纵以及更多的通道中的多路复用已成为紧迫的需求。在这项工作中,我们演示了由螺旋等离子元素层,液晶晶体(LC)层和螺旋介质元素层组成的Terahertz(THZ)级联的MetadeVice。通过旋转轨道角动量耦合和光子状态叠加,PV和FV的平均模式纯度平均产生超过85%。由于螺旋跨面的反转不对称设计引起的,实现了OAM的均衡对称性破裂(拓扑电荷数不再以正面和负为正面发生,但所有这些都是正面的),产生了6个与脱钩的旋转状态和近距离/远距离位置相关的6个独立通道。此外,通过LC集成,可以实现动态模式切换和能量分布,最终获得多达12个模式,调制比率高于70%。这种主动调整和多渠道多路复用元点在PVS和FVS之间建立了桥梁连接,在THZ通信,智能感知和信息处理中显示出有希望的应用。
在两个平行板之间NS脉冲分解期间的抽象电离波发育中,通过PS电场诱导的第二次谐波(EFISH)生成和动力学建模研究了介电覆盖的电极。结果表明在放电间隙中形成了两个定义明确的电离波,这需要相对较高的初始电子密度。第一个,阳极定向的波是通过施加的电压脉冲“扫地”初始电子产生的。第二波源于阴极和第一波前部之间,由于该区域的场增强,产生了两个波前方,朝相反的方向传播并在等离子体发射图像中观察到。仅通过efish测量值检测到第二波的阳极定向前部,这很可能是由于阴极定向前部靠近壁。测量和建模预测都表现出由第二波的阳极定向前面引起的间隙中心的瞬态电场。在第一个波和第二波后面形成的等离子体域之间的边界,在等离子体发射图像中观察到,通过EFISH测量值检测到,并通过建模计算进行了预测。模型在放电脉冲结束时预测的电子密度和耦合的能量分布几乎是统一的,除了在阴极 - 粘合壁附近,在该壁附近,该模型的适用性尚不确定,并且无法访问Efish测量值。
Yevgeny Raitses Princton等离子体物理实验室电子束产生的等离子体及其应用 - 从材料进程到太空推进,对微型等离子体(E-Beam)产生的低温等离子体(LTP)的兴趣越来越兴趣,用于在原子尺度上用于原子质尺度的微电量表和量子系统。对于这些应用,血浆([E] 〜10 9 -10 12 cm -3,t e〜0.1-10 eV通常是通过将能量(10 2 - 10 4 eV)E -Beam注入低压(10 -1 -1 -10 2 MTORR)沿施加磁场(10-10 3 Gauss)的低压(10 -1 -1 -10 2 mtorr)。B场有助于局限于通过反应器传播的e-束。跨B场的施加电场可以控制离子通量到等离子体外围的底物(WAFER)。具有交叉电和磁场(EXB)场的电子束等离子源可以选择性地产生离子和反应性物种,而低能颗粒的均匀通量则可以使其对材料的低破坏处理有吸引力。由于电子束在亚米压力下有效地将分子气体电离,因此最近在非常低的地球轨道(70-200 km)下为空气呼吸质量推进器进行了生动。在本演讲中,我将回顾电子束发电LTP系统及其应用的概念。i将概述关键等离子体过程,包括等离子体的产生,跨场扩散和梁血压相互作用。我将讨论控制电子束产生的EXB等离子体中电子和离子的特征不稳定性,通量和能量分布功能的挑战。
时间分辨电子显微镜引起了人们的极大兴趣,可用于研究空间分辨率低于光学衍射极限的超快分子、表面和体积动力学[1–8]。为了实现最佳成像条件,需要精确控制自由电子的发射和传播,这些控制现在也推动了电子-物质相互作用实验[9–14]和显微镜设计[15–18]的进步。对于任何电子显微镜,由于稳定性、相干性以及空间、时间和光谱分辨率之间的权衡,电子发射器和发射机制的选择限制了可实现的成像条件。包含大量电子的短脉冲可用于减少显微镜的曝光时间,并且是生成不可逆动力学的单次图像所必需的,这需要每个脉冲多达 10 9 个电子,但库仑相互作用会展宽大电流脉冲的空间和能量分布,增加像差并降低分辨率[5]。在较长的脉冲中,这些效应会被抑制,大量电子可以在纳秒脉冲包络内传播,同时仍能保持研究相变、反应动力学和蛋白质折叠等过程所需的时间分辨率[19–22]。此外,纳秒脉冲非常适合依赖快速电子门控的仪器,如多通透射电子显微镜[23–25]。这些脉冲可以通过使用光束消隐器及时过滤电子束来产生,也可以通过短激光脉冲触发发射[26]。消隐器通常与连续电子源集成在一起,可以模糊或位移电子束[27]。或者,激光触发需要对电子源进行光学访问,但会引入不同的自由度来控制光发射脉冲的电流、时间持续时间和能量扩展。