抽象的大肠杆菌DNA速酶催化封闭的双链DNA的否定性超涂层,以ATP为代价。酶的酶的另外活性阐明了超涂层反应的能量偶联成分是ATP至ADP和ADP和PI的DNA依赖性水解,以及ATP通过gyrase裂解反应的DNA位点特异性的ATP改变。这两种DNA链的这种裂解是由稳定的Gy- Rase-DNA复合物的十二烷基硫酸钠处理的,该配合物被抑制剂氧甲酸捕获。ATP或不可水解的类似物,腺基-5'-二氨基磷酸酯(APP [NHLP),都会在Colel DNA上移动主要的裂解位点。这种切割重排的Novobiocin和Coumermycin al的预防将抗生素的作用位点放置在ATP水解之前的一个反应步骤中。步骤阻塞是ATP的结合,因为香豆素和Novobiocin在ATPase和SuperCoiling分析中与ATP竞争相互作用。 K;对于ATP而言,值比KM少四个数量级以上。这种简单的机制解释了药物对DNA回旋酶的所有影响。使用APP [NHP [NHP的另一种有效的反应竞争抑制剂催化YGYRASE的竞争抑制剂,表明将DNA驱动到更高的能量超胶结形式不需要高能键的裂解。 与Gyrase,App的底物水平(NHLP诱导与酶量成正比的超串联; a -0.3超螺旋转弯是根据Gyrase Frotomer A引入的。 我们假设ATP和APP [NH] P是回旋酶的构象变化的变构效应器,导致一轮超涂层。使用APP [NHP [NHP的另一种有效的反应竞争抑制剂催化YGYRASE的竞争抑制剂,表明将DNA驱动到更高的能量超胶结形式不需要高能键的裂解。与Gyrase,App的底物水平(NHLP诱导与酶量成正比的超串联; a -0.3超螺旋转弯是根据Gyrase Frotomer A引入的。我们假设ATP和APP [NH] P是回旋酶的构象变化的变构效应器,导致一轮超涂层。通过ATP水解的核苷酸解离,将回旋酶返回其原始构型,从而允许酶转移。伴随核苷酸亲和力改变的这种环状构象变化似乎也是其他多种操作中能量转导的共同特征,包括肌肉收缩,蛋白质合成和氧化磷酸化。
如今,定制激光束很少使用,因此错失了优化现有工艺或引入新工艺的机会。动态光束整形的新方法有可能在未来改变这一现状。这篇主题论文讨论了允许在这样的时间尺度上将瞬态能量输入到工件中的方法,从而引导底层交互过程朝着期望的结果发展。它展示了原理,对必要的系统技术进行了分类,并给出了应用示例,以使读者熟悉该主题。它假定瞬态能量输入和所解决的工艺特征之间的时间尺度相关耦合是实现最佳效果的关键。© 2024 作者。由 Elsevier Ltd 代表 CIRP 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)
心力衰竭(HF)是一个不断增长的公共卫生问题,影响了人口的1% - 3%(Van Riet等,2016)。HF的常见原因是高血压,糖尿病和肥胖症。HF与代谢功能障碍有关,涉及选择首选底物的改变,中间代谢的变化以及缺陷的能量和氧化还原稳态。增加数据表明心脏代谢与心脏功能之间的直接联系。从机械上讲,代谢变化通过引起表观遗传改变,信号通路失调和翻译后调节改变而影响心脏功能(Bertero and Maack,2018b; Lopaschuk等,2021; Ritterhoff和Ritterhoff和Tian,2023)。相反,HF中的病理心脏工作量增加可以超过能量供求匹配,并引起严重的代谢改变(Bertero and Maack,2018a)。该研究主题的目的是阐明心脏代谢和线粒体功能障碍如何影响机械能源耦合以及最终的心脏功能。由于其在代谢中的核心作用,线粒体对于心脏功能至关重要。中央线粒体功能,包括能量提供和氧化还原稳态,受Ca 2+信号的调节。在他们的评论中,Popoiu等。总结了详细的分子机制,如何将线粒体功能和肌动感收缩联系起来。在线粒体中,呼吸链的氧化磷酸化将NADH氧化为NAD +
电转气技术可以实现电网与气网间能量的双向流动,有利于改善综合能源系统的能量耦合、提高运行灵活性和经济性。本研究根据电转气设备的特点,在改进的P2G模型基础上,提出了详细的综合能源系统模型,并提出最优效率匹配系数以提高能源设备利用率。针对碳排放分配问题,引入碳交易机制,建立兼顾经济效益与成本(即销售效益、运营成本、碳交易成本、风电和光伏限电惩罚措施)的优化模型。案例研究验证了所提优化模型的优越性。此外,结果表明带气罐的电转气模式在综合能源系统综合运行能力方面具有明显优势。
高渗透可再生能源固有的间歇性对微电网能源管理提出了经济性和可靠性问题。本研究提出了一种用于高可再生多能源微电网 (MEM) 的两层预测能源管理系统 (PEMS)。在该 MEM 中,地热、太阳能和风能被转换和调节为电力、热能和天然气供应,其中基于电解热电化学效应充分利用了多能源互补性。由于可再生能源 (RES) 的能量耦合越来越紧密,且存在不确定性,因此提出的微电网多能源管理是一个复杂而繁琐的问题。因此,这个棘手的问题可以通过具有不同时间尺度的两层 PEMS 来处理,其中上层最小化系统运行成本,下层应对可再生能源波动。对高可再生 MEM 进行了模拟研究,以表明其有效性和优于单一时间尺度方案。模拟结果表明,采用高可再生能源适应性可降低 22.2% 的运营成本。
方法 起搏器系统 在将 Advisa MRI 系统引入人体之前,进行了涉及平台和动物研究以及计算机建模的临床前测试,以了解 MRI 对起搏系统的影响。16 需要对系统设计进行多项修改,以改善这些调查中发现的不良相互作用:(1) 修改导线以减少射频加热,(2) 设计内部电路以降低不适当心脏刺激的可能性,(3) 限制铁磁材料的数量,(4) 实施强大的前端保护网络和混合滤波,以防止内部电源中断并减轻 MRI 能量耦合到遥测线圈的影响,(5) 将簧片开关替换为霍尔传感器(在 MRI SureScan 模式下断开),有助于在 MRI 期间提供可预测的起搏,(6) 实施专用的编程护理路径,以方便执行 MRI 前检查表并在 MRI 期间选择适合患者的定制起搏设置。这些修改结合起来,有效地解决了起搏器患者进行 MRI 扫描的风险。
提出了一种机械声学发射器和匹配谐振接收器的新概念。重量轻、结构紧凑且成本低廉的发射器以极小的输入功率产生一个或多个离散频率的高功率声脉冲。换能器系统非常适合将声脉冲能量耦合到密集介质中,例如墙壁和水。讨论了冲击换能器的应用,包括通过墙壁检测和跟踪人体,以及通过低成本的自主、自充电、电池供电的声纳浮标网络进行长时间水下监视。介绍了一种用于港口和沿海水域的声纳浮标监视网络的概念设计。描述了一种仅使用基本信号处理即可通过厚墙检测人体运动的冲击发射器和匹配接收器系统,并给出了结果。讨论了将信噪比提高几十 dB 的信号处理方法。 __________________________________________ PACS 编号:4338-p、4320Tb、4330Jx、4340Rj
定向能战办公室 (DEWO) 和海军水面作战中心达尔格伦分部 (NSWCDD) 的定向能部门将过去的研究和数据与高功率微波 (HPM) 领域的持续创新相结合,以满足对非致命、非动能武器的迫切需求。HPM 武器可以描述为在射频 (RF) 或微波频谱中辐射电磁能量的非动能设备。它们旨在扰乱、拒绝、降低、损坏或摧毁目标。本质上,这是通过高功率电磁波在空气中传播并通过穿过结构的外层并将能量耦合到关键电子元件来拦截目标来实现的。由于目标是对各种目标都有效,HPM 已成为各种技术的统称:波形、源频率和不同信号带宽的分布。因此,HPM 研究和评估的目标是解决目前尚无交战选项的目标。 NSWCDD 正在致力于寻找最佳 HPM 任务平台并将相关技术应用到该领域。
摘要:我们建议在各向异性石墨烯 - 光晶(GPC)结构中用于血红蛋白(Hb)检测的TAMM等离子体(TP)和表面等离子体(SP)杂交模式。提出的GPC传感器显示了由于面内各向异性特性引起的偏振依赖性响应。由于TP和SP模式的同时激发,该提出的传感器的反射曲线显示出两个反射率最小值。用于检测HB时,TP模式比SP模式更大。使用傅立叶模式光谱分析,当入射光的极化发生变化时,我们观察到从TP到SP模式的能量耦合,提供了增强传感器灵敏度的选项。我们提出了一种双浸法(DDM),以基于TP和SP模式的同时激发来检测HB。使用DDM,当HB水平为189 g/L时,提出的传感器提供314.5度/RIU的最大灵敏度和1746 RIU -1的FOM。所提出的各向异性GPC传感器为高FOM高度敏感的生物分子检测提供了可能的应用。
e. 超级计算技术 12 f. 分布式仿真、集成和互操作性 12 2. 材料研究(MR)活动 13 a. KCI-MR-1:士兵和平台电源系统材料 13 b. KCI-MR-2:节能电子学和光子学 17 c. KCI-MR-3:敏捷快捷制造 17 d. KCI-MR-4:量子科学 21 e. KCI-MR-5:响应材料的能量耦合物质(ECM) 22 f. KCI-MR-6:轻质材料 22 g. CCE-MR-1:材料设计 23 h. CCE-MR-2:材料合成与加工 24 i. CCE-MR-3:材料特性与发现 25 j. 光子学 26 k. 定位、导航和授时(PNT) 28 l. 能源和功率 29生物源传感器、电源、设备和材料研究 (MR) 30 n. RF 至 THz 设备和集成电路技术 31 3. 机动科学 (ScMVR) 活动 31