我们旨在使用肥胖的Zucker糖尿病脂肪(ZDF)大鼠作为2型糖尿病模型来研究布洛芬对2型糖尿病(T2D)的治疗潜力。ZDF大鼠是高血糖,血脂异常和表达的临界标记,与瘦门控制相反,因此反映了肥胖与促进T2D的慢性炎症之间的关系。慢性治疗(2-(4-异丁基苯基)丙酸)用于研究对病理T2D条件的影响。布洛芬降低了A1c,但仅在早期时间点(I.G.,15和30分钟)后诱导高胰岛素释放,导致AUC值的降低并转化为高HOMA-IR。此外,布洛芬显着降低了胆固醇,游离脂肪酸和HDL-C。通过抑制细胞因子/趋化因子信号传导(i.g,cox-2,icam-1和tnf-a),这可能是基于其抗炎性效应,如全血液和taq man和/inti in-flimotial cy的全血和附子性脂肪组织中所测量的(i.g,cox-2,icam-1和tnf-a)。血液中的ELISA分析。 总而言之,我们的ZDF动物研究表明,布洛芬对糖尿病并发症(例如炎症和血脂异常)的积极作用,但也表现出引起胰岛素抵抗的风险。通过抑制细胞因子/趋化因子信号传导(i.g,cox-2,icam-1和tnf-a),这可能是基于其抗炎性效应,如全血液和taq man和/inti in-flimotial cy的全血和附子性脂肪组织中所测量的(i.g,cox-2,icam-1和tnf-a)。血液中的ELISA分析。总而言之,我们的ZDF动物研究表明,布洛芬对糖尿病并发症(例如炎症和血脂异常)的积极作用,但也表现出引起胰岛素抵抗的风险。
最新的估计是2019年全球疾病研究负担,表明全球约有5600万人有心力衰竭(HF)诊断,这是残疾和死亡的主要原因[1]。缺血性和高血压心脏病分别是男性和女性HF的主要原因[2]。在1990年至2019年之间,HF病例有所增加(尤其是在年轻患者中),但两种性别的年龄标准化率略有下降[2,3]。在发达国家中,已知HF的患病率通常估计为一般成人人口的1%至2%[3]。但是,与基于仅包含已建立案例的注册表的数据相比,超声心动图筛查研究的患病率约为4.2%,这一数字可能是一个更现实的估计值[3]。实际上,由于定义和人口的差异,有关HF的流行病学研究具有一定的局限性,而且由于大多数研究依赖于通常缺乏重要的临床信息或医院记录中的行政数据,这些数据无法捕获在门诊环境中接受护理的患者。hf在两种主要表型中呈现 - HF,射血分数降低(HFREF)和HF,并保留了射血分数(HFPEF),具有额外的表型,并具有轻度降低的射血分数(HFMREF)。尽管临床表现相似,但导致HFREF和HFPEF的机制是不同的[4]。支持这一观察结果的事实是,是基石的神经激素疗法
像放射组学和人工智能这样的研究开辟了广阔的前景并提供了意想不到的可能性,将“传统测量方法”整合到这些新的研究技术中,目的是建立肥胖估计值与其对多种疾病发病的影响之间的相关性。为此,测量脂肪组织(AT)最准确的方法是计算机断层扫描(CT)和核磁共振成像(MRI)。这些图像可以应用于放射组学分析所需的数据提取和人工智能工具的开发,以便为医生的决策过程提供支持,并建立放射组学特征和结果疾病之间的新相关性。这些断层扫描生成的图像在临床上被收集用于各种疾病的诊断、分类和治疗评估,因此它们可以用于研究目的。
简介:近年来,儿童抑郁和焦虑的患病率不断上升,而儿童肥胖和久坐行为仍然是主要的公共卫生问题。现有证据表明,早期运动发育和运动经验有助于心理社会和身体发育。通过进一步了解早期运动发育的深远影响,旨在预防身心健康逆境的早期生活干预措施可能会受益于研究早期运动发育里程碑 (MDM) 的实现情况。本研究首次评估了父母报告的总体 MDM 时间与儿童后期心理健康、心肺健康 (CRF)、皮下腹部 (SAAT) 和内脏脂肪组织 (VAT) 结果的客观指标之间的纵向关联。
糖尿病是一种慢性代谢疾病,其特征是血糖水平升高。多年来,研究越来越强调了炎症与糖尿病之间的复杂关系。本文探讨了炎症在糖尿病发病机理中的多方面作用,包括1型和2型糖尿病。我们深入研究了连接炎症和糖尿病的潜在机制,讨论了炎症细胞因子,免疫细胞激活和脂肪组织炎症的影响。此外,我们研究了糖尿病与炎症之间的双向关系,在这些关系中,高血糖可以促进炎症反应,从而永久存在恶性循环。本文还强调了了解炎症在糖尿病中的作用的临床意义,为针对炎症途径的潜在治疗干预措施铺平了道路[1]。
资格和研究选择了两个作者(AJ和AE)筛选了系统搜索中发现的所有研究的标题和摘要,以识别符合我们纳入荟萃分析标准的研究。我们选择了具有队列设计的研究(前瞻性和回顾性队列研究);这是在成年人总体中进行的(> 18岁);该测量的体重指数,臀部圆周,腰围,大腿圆周,腰围比,腰围比率,腰围比率比,身体肥胖指数,体形指数,体形指数,体内脂肪质量,脂肪质量,脂肪质量和内脏脂肪组织百分比,包括两个或多个定量类别;认为2型糖尿病的发生率是结果;这报告了参与者或人年的人数
间充质干细胞(MSC)是在各种组织中发现的成年干细胞群,包括骨髓,脂肪组织和围产期相关的组织。1 MSC由于其独特的特性(包括再生和免疫瘤)而成为一种有希望的治疗方法。MSC的治疗机制是复杂的,尚未完全理解,但据信它们涉及几种不同的过程。一种重要的机制是生长因子,细胞因子和其他信号分子的旁分泌分泌。2,3这些分子可以通过与组织微环境的各种成分相互作用并调节免疫反应来帮助促进组织修复,减少局部炎症和调节系统系统。4 MSC的免疫调节作用是它们最吸引人和最有价值的特性之一。5
动脉高血压和肥胖具有复杂的,多因素的病因,并且是由于基因,环境,生活方式和情绪因素的相互作用而产生的,并且被认为是低强度的慢性炎症状态,因为研究表明,这些临床条件与炎症标记的水平高。与肥胖相关的动脉高血压具有复杂的机制,但是交感神经多动作作为这些机制涉及的主要因素。在肥胖个体中,交感神经的增加主要源自胰岛素抵抗和随之而来的高胰岛素血症,肾素 - 血管紧张素 - 醛固酮的过度激活(MRS);和高稀释血症。这些因素导致各种途径导致交感神经的动力,并且可能是中枢神经系统或间接道路的直接刺激,但是由此产生的高肾上腺素能状态会触发一系列变化,导致高血压,动脉粥样硬化和增加的血栓形成风险。在肥胖症中观察到的交感神经多动引起的许多变化中,我们可以突出显示:增加糖化产物的形成,血管肌肉组织中营养作用的增加,较大的管状钠钠的表达,血管蛋白原mRNA在人脂肪组织中的血管蛋白酶mRNA的表达,通过脂肪组织中的氧化偏压,氧化牛的氧化偏压,氧化能力,氧化能力,氧化能力,通过氧化性氧化,氧化能力,氧化能力。在一氧化氮合成酶(ENOS)中。其他药物和其他脂肪蛋白,例如抗药药,维斯法汀和吉碱,也参与了肥胖个体动脉高血压的机制,但与瘦素和脂联素相关的作用较小。最近的研究表明,巨噬细胞的积极作用,因此在脂肪组织的炎症网络中具有先天的免疫力,这表明适应性免疫元素的重要参与,例如T细胞及其细胞因子。
摘要:心外膜脂肪组织(EAT)是一种内分泌和旁分泌器官,由直接位于心肌和内脏心包之间的一层脂肪组织组成。在生理条件下,饮食会发挥棕色样脂肪特征的保护作用,代谢过量的脂肪酸,并分泌抗炎性和抗纤维化细胞因子。在某些病理条件下,EAT获得了促进的转录验证,从而增加了具有促炎性特性的生物活性脂肪细胞因子的合成,从而促进氧化应激,并最终导致内皮损伤。饮食在心力衰竭(HF)中的作用主要限于HF,并保留了射血分数(HFPEF),并且与HFPEF肥胖表型有关。在HFPEF中,EAT似乎获得了临时弹药的收益,并且更高的饮食价值与较差的结果有关。较少的关于EAT在HF中的作用的数据较少,其射血分数降低(HFREF)。相反,在HFREF中,EAT似乎起着营养作用,较低的值可能对应于分解代谢,不良表型的表达。到目前为止,有证据表明,钠 - 葡萄糖共转运蛋白-2受体抑制剂(SGLT2-I)的有益的全身性心血管效应可能通过对EAT诱导有利的改良作用来部分介导。因此,EAT可能代表着开发新药物以改善心血管预后的有希望的靶心器官。因此,一种基于心脏结构改变和独特生物分子途径的详细表型的方法可能会改变当前情况,从而朝着具有特定的治疗靶标的精确医学模型,以考虑不同的个体方案。这篇综述的目的是总结当前有关HF在整个射血分数中食品的生物分子途径的知识,并将EAT作为HF中的治疗靶标的潜力描述。
糖尿病被认为是危险因素,这主要是由于它在脂质代谢中引起的重大改变。糖尿病是由于缺乏胰岛素分泌或减少组织对胰岛素的组织感应性而引起的碳水化合物,脂肪和蛋白质的代谢受损的同型。该疾病的一个特征方面是胰岛素的有缺陷或不足的分泌反应,这表现在碳水化合物(葡萄糖)的不当利用中,因此高血糖。糖尿病之所以发生,是因为胰腺无法产生足够的激素胰岛素来满足人体的需求,或者由于这种激素无法正常工作(胰岛素抵抗)。 如果单个UAL在细胞中没有葡萄糖,则身体将从另一个来源(脂质)获得能量。 葡萄糖是胰腺从Langerhans胰岛的β细胞中释放胰岛素的主要信号。 细胞具有胰岛素受体,胰岛素与受体和mobi lizes葡萄糖转运蛋白(GLUT)结合,在脂肪组织中,它具有GLUT 4,在胰腺中,它具有GLUT 2。。 Gluts进入细胞表面并在细胞内传输葡萄糖。 大多数葡萄糖都进入糖裂解途径,其中大多数被转化为糖原(葡萄糖糖尿病之所以发生,是因为胰腺无法产生足够的激素胰岛素来满足人体的需求,或者由于这种激素无法正常工作(胰岛素抵抗)。如果单个UAL在细胞中没有葡萄糖,则身体将从另一个来源(脂质)获得能量。葡萄糖是胰腺从Langerhans胰岛的β细胞中释放胰岛素的主要信号。细胞具有胰岛素受体,胰岛素与受体和mobi lizes葡萄糖转运蛋白(GLUT)结合,在脂肪组织中,它具有GLUT 4,在胰腺中,它具有GLUT 2。Gluts进入细胞表面并在细胞内传输葡萄糖。大多数葡萄糖都进入糖裂解途径,其中大多数被转化为糖原(葡萄糖
