我们先前发现,通过麦芽糖加入A和A-葡萄糖苷酶抑制剂Miglitol(麦芽糖/Miglitol)通过glut2抑制剂抑制剂phloretin抑制小鼠中的A--葡萄糖苷酶抑制剂Miglitol(麦芽糖/Miglitol)。此外,麦芽糖/miglitol抑制了葡萄糖依赖性胰岛素多肽(GIP)通过涉及小型脂肪酸(SCFA)的机制隔离,该机制由微生物组产生。然而,未知是否通过调节SCFA来抑制GLP-1分泌。在这项研究中,我们检查了腓果素对体外和体内微生物组释放的影响。在大肠杆菌中,当用麦芽糖/米格列醇培养时,乙酸盐释放到培养基中。在小鼠中,菲洛莱汀抑制麦芽糖/米格列醇诱导的SCFA在门静脉中增加。此外,与二氯化津在小鼠中共同施用时,α-甲基-D-葡萄糖(MDG)是GLUT2的较差的GLP-1分泌,这显着增加了GLP-1分泌,这表明GLUT2对于葡萄糖/菲洛兹蛋白诱导的GLP-1分泌不是必不可少的。MDG提高了门户网站SCFA水平,从而增加了GLP-1分泌并抑制小鼠的GIP分泌,这表明MDG是可代谢的,而不是哺乳动物,而是微生物群。总而言之,建议通过抑制微生物组产生的SCFA抑制麦芽糖/米格列醇诱导的GLP-1分泌。©2022 Elsevier Inc.保留所有权利。
摘要 肠道微生物群分解不可消化的淀粉后释放的挥发性小分子,包括短链脂肪酸 (SCFA)、乙酸盐和丙酸盐,可通过特定的 G 蛋白偶联受体 (GPCR) 以类似激素的方式发挥作用。这些 SCFA 的主要 GPCR 靶标是 FFA2 和 FFA3。使用转基因小鼠(其中 FFA2 被一种称为设计药物专门激活的设计受体 (FFA2-DREADD) 的改变形式取代,但 FFA3 保持不变)和新发现的 FFA2-DREADD 激动剂 4-甲氧基-3-甲基苯甲酸 (MOMBA)),我们展示了 FFA2 和 FFA3 的特定功能如何定义 SCFA-肠-脑轴。肠腔内 FFA2/3 的激活会刺激脊髓活动,而肠道 FFA3 的激活会直接调节感觉传入神经元的放电。此外,我们证明 FFA2 和 FFA3 均在背根神经节和结状神经节中功能性表达,它们通过不同的 G 蛋白和机制发出信号来调节细胞钙水平。我们得出结论,FFA2 和 FFA3 在不同水平上发挥作用,为肠道微生物群来源的 SCFA 调节中枢活动提供了一个轴。
摘要 肠道微生物群分解不可消化的淀粉后释放的挥发性小分子,包括短链脂肪酸 (SCFA)、乙酸盐和丙酸盐,可通过特定的 G 蛋白偶联受体 (GPCR) 以类似激素的方式发挥作用。这些 SCFA 的主要 GPCR 靶标是 FFA2 和 FFA3。使用转基因小鼠(其中 FFA2 被一种称为设计药物专门激活的设计受体 (FFA2-DREADD) 的改变形式取代,但 FFA3 保持不变)和新发现的 FFA2-DREADD 激动剂 4-甲氧基-3-甲基苯甲酸 (MOMBA)),我们展示了 FFA2 和 FFA3 的特定功能如何定义 SCFA-肠-脑轴。肠腔内 FFA2/3 的激活会刺激脊髓活动,而肠道 FFA3 的激活会直接调节感觉传入神经元的放电。此外,我们证明 FFA2 和 FFA3 均在背根神经节和结状神经节中功能性表达,它们通过不同的 G 蛋白和机制发出信号来调节细胞钙水平。我们得出结论,FFA2 和 FFA3 在不同水平上发挥作用,为肠道微生物群来源的 SCFA 调节中枢活动提供了一个轴。
委员会主席 Stephen H. Safe 委员会成员 Natalie Johnson Arul Jayaraman Timothy Phillips 跨学科项目主席 Ivan Rusyn
抽象背景磷脂酰肌醇3-激酶(PI3K)经常在癌症中过度激活,并且在恶性细胞和免疫细胞中都起着重要作用。PI3Kα抑制剂对肿瘤微环境(TME)的影响仍然很大未知。在这里,我们研究了临床PI3Kα特异性抑制剂CYH33对TME的调节。检测到在免疫能力的背景下或无胸腺小鼠中Cyh33对鼠肿瘤的活性。单细胞RNA测序和多参数流式细胞仪,以确定TME的免疫分析。用原代鼠细胞进行了CYH33对免疫细胞的影响。结果CYH33在免疫能力的情况下表现出更有效的抗肿瘤活性。CYH33增强了CD8 + T和CD4 + T细胞的浸润和激活,同时衰减M2样巨噬细胞和调节性CD4 + T细胞。通过在CYH33治疗中诱导长期免疫记忆的诱导来证实记忆T细胞的增加。从机械上讲,CYH33通过巨噬细胞对M1表型的优先极化来缓解CD8 + T细胞抑制的膨胀。CYH33促进了TME中的脂肪酸(FA)代谢,而FA则增强了CD8 + T细胞在体外的活性。CYH33与FA合酶(FASN)抑制剂C75的组合协同抑制了肿瘤的生长,并增强了宿主免疫。结论CYH33诱导免疫激活并与FASN抑制剂协同,以进一步促进抗肿瘤免疫,从而获得了对PI3K抑制剂如何通过调节TME的活性并为PI3K和FASN在乳腺癌治疗中的并发靶向的理由。
种子油可用作食用油,也越来越多地用于工业用途。尽管高油酸种子油更适合工业用途,但大多数种子油富含多不饱和脂肪酸 (PUFA),而油酸等单不饱和脂肪酸 (MUFA) 含量较低。亚麻荠油是一种新兴的油籽作物,种子含油量高,且能抵抗环境压力,其含有 60% 的 PUFA 和 30% 的 MUFA。六倍体亚麻荠携带三种 FAD2 同源物,编码脂肪酸去饱和酶 2 (FAD2),负责从油酸合成亚油酸。在本研究中,为了增加亚麻荠籽油中的 MUFA 含量,我们通过 CRISPR-Cas9 介导的基因编辑生成了 CsFAD2 敲除植物,使用包含 DsRed 作为选择标记的 pRedU6fad2EcCas9 载体、用于驱动覆盖三个 CsFAD2 同源物共同区域的单个向导 RNA (sgRNA) 的 U6 启动子以及用于驱动 Cas9 表达的卵细胞特异性启动子。我们使用来自转化亚麻荠叶片的基因组 DNA 通过 PCR 分析了 CsFAD2 同源物特异性序列。三对 FAD2 同源物的敲除导致矮小的丛生表型,但大大提高了种子中的 MUFA 水平(提高了 80%)。然而,具有两对 CsFAD2 同源物的转化子被敲除,但另一对野生型杂合子显示正常生长,种子 MUFA 产量增加了 60%。这些结果为通过基因组编辑影响多倍体作物生长的基因代谢工程提供了基础。
简介 肝脏中脂质的代谢、储存和流动在饥饿、饮食引起的肥胖、糖尿病和非酒精性脂肪性肝炎 (NASH) 中起着核心作用。肝脏在从头脂肪生成的主要位点和脂质氧化的主要位点之间切换时,脂质代谢的动态范围非常大。脂质合成、吸收、输出和氧化的平衡在代谢综合征的进展和发病机制中起着至关重要的作用,对于脂肪肝和 NASH 的发病率不断上升尤为重要。然而,就脂质代谢的作用而言,控制从正常代谢生理向病理生理转变的机制尚不清楚。从头合成或从饮食中吸收的脂肪酸以甘油三酯 (TG) 的形式储存在脂质滴中,并在能量不足时被动员起来,为线粒体的氧化代谢提供脂肪酸。在大多数情况下,甘油三酸酯水解酶脂肪甘油三酸酯脂肪酶 (Atgl;也称为 Pnpla2、desnutrin) 会调节甘油三酸酯从甘油三酸酯中释放脂肪酸 (1, 2)。Atgl 是甘油三酸酯水解中的第一个速率设定酶 (1–3),Atgl 或其辅激活剂 Cgi-58 的突变会导致人类中性脂质储存病 (4, 5)。这些疾病以及小鼠中 Atgl 的完全丧失会导致线粒体脂肪酸氧化缺陷。无法调动甘油三酸酯会导致线粒体缺乏脂肪酸并限制氧化代谢。此外,甘油三酸酯水解缺陷已显示表现出显著的转录缺陷 (3, 6–10)。也就是说,脂肪酸从脂质滴中释放是 Ppar α 介导的脂肪酸氧化转录编程调节的重要调节因子。因此,Atgl 对于提供脂肪酸氧化的底物和协调维持脂肪酸氧化所需的转录程序都很重要。脂肪酸在线粒体中被氧化,为肝细胞提供 ATP 和 NADH,以促进糖异生并产生乙酰辅酶 A,即生酮作用的碳底物。这使得肝脏能够缓冲血糖并在食物匮乏期间为高度氧化的组织提供替代燃料(酮体)。脂肪酸氧化在许多生物过程中的重要性从导致人类疾病的该途径中的多个突变中可以看出(11)。长链脂肪酸 β 氧化受活性脂肪酸(酰基辅酶 A)从细胞质到线粒体基质的受控易位控制。这是由连续的酰基转移酶肉碱棕榈酰转移酶 1 和
1加利福尼亚大学旧金山分校的生物工程和治疗科学系与肝脏中心,美国加利福尼亚州94143; jiajy01@163.com(J.J。); cheli0315@yahoo.com(l.c. ); junyantao2010@gmail.com(J.T。 ); sheng.zhong@ucsf.edu(S.Z。) 2肿瘤和血液学系,第二医院,吉林大学,长春130041,中国3传说Biotech USA R&D R&D中心,Piscataway,NJ 08854,美国4美国病理研究所,雷根斯堡大学,93053,雷登斯堡,德国雷登斯堡; a.cyglius@gmail.com(A.C。); graziella.85@live.it(G.P. ); matthias.evert@klinik.uni-regensburg.de(M.E.) 5萨萨里大学医学,外科和实验科学系,意大利萨萨里07100 6营养科学与毒理学系,加利福尼亚大学伯克利分校,伯克利分校,美国加利福尼亚州94720,美国; xue.wang@berkeley.edu 7病理研究所,格里夫斯瓦尔德大学,17475年,德国格里夫斯瓦尔德; silvia.ribback@uni-greifswald.de *通信:xin.chen@ucsf.edu(X.C. ); calvisid@uniss.it(d.f.c. );电话。 : + 1-415-502-6526(X.C. ); + 39-079-228306(D.F.C.) †这些作者为这项工作做出了同样的贡献。 ‡当前地址:匹兹堡大学医学院病理学系,匹兹堡,美国第15261页。1加利福尼亚大学旧金山分校的生物工程和治疗科学系与肝脏中心,美国加利福尼亚州94143; jiajy01@163.com(J.J。); cheli0315@yahoo.com(l.c.); junyantao2010@gmail.com(J.T。); sheng.zhong@ucsf.edu(S.Z。)2肿瘤和血液学系,第二医院,吉林大学,长春130041,中国3传说Biotech USA R&D R&D中心,Piscataway,NJ 08854,美国4美国病理研究所,雷根斯堡大学,93053,雷登斯堡,德国雷登斯堡; a.cyglius@gmail.com(A.C。); graziella.85@live.it(G.P. ); matthias.evert@klinik.uni-regensburg.de(M.E.) 5萨萨里大学医学,外科和实验科学系,意大利萨萨里07100 6营养科学与毒理学系,加利福尼亚大学伯克利分校,伯克利分校,美国加利福尼亚州94720,美国; xue.wang@berkeley.edu 7病理研究所,格里夫斯瓦尔德大学,17475年,德国格里夫斯瓦尔德; silvia.ribback@uni-greifswald.de *通信:xin.chen@ucsf.edu(X.C. ); calvisid@uniss.it(d.f.c. );电话。 : + 1-415-502-6526(X.C. ); + 39-079-228306(D.F.C.) †这些作者为这项工作做出了同样的贡献。 ‡当前地址:匹兹堡大学医学院病理学系,匹兹堡,美国第15261页。2肿瘤和血液学系,第二医院,吉林大学,长春130041,中国3传说Biotech USA R&D R&D中心,Piscataway,NJ 08854,美国4美国病理研究所,雷根斯堡大学,93053,雷登斯堡,德国雷登斯堡; a.cyglius@gmail.com(A.C。); graziella.85@live.it(G.P.); matthias.evert@klinik.uni-regensburg.de(M.E.)5萨萨里大学医学,外科和实验科学系,意大利萨萨里07100 6营养科学与毒理学系,加利福尼亚大学伯克利分校,伯克利分校,美国加利福尼亚州94720,美国; xue.wang@berkeley.edu 7病理研究所,格里夫斯瓦尔德大学,17475年,德国格里夫斯瓦尔德; silvia.ribback@uni-greifswald.de *通信:xin.chen@ucsf.edu(X.C. ); calvisid@uniss.it(d.f.c. );电话。 : + 1-415-502-6526(X.C. ); + 39-079-228306(D.F.C.) †这些作者为这项工作做出了同样的贡献。 ‡当前地址:匹兹堡大学医学院病理学系,匹兹堡,美国第15261页。5萨萨里大学医学,外科和实验科学系,意大利萨萨里07100 6营养科学与毒理学系,加利福尼亚大学伯克利分校,伯克利分校,美国加利福尼亚州94720,美国; xue.wang@berkeley.edu 7病理研究所,格里夫斯瓦尔德大学,17475年,德国格里夫斯瓦尔德; silvia.ribback@uni-greifswald.de *通信:xin.chen@ucsf.edu(X.C.); calvisid@uniss.it(d.f.c.);电话。: + 1-415-502-6526(X.C.); + 39-079-228306(D.F.C.)†这些作者为这项工作做出了同样的贡献。‡当前地址:匹兹堡大学医学院病理学系,匹兹堡,美国第15261页。
癌症是对人类健康和生命的威胁。尽管以前以化学药物治疗为中心,但癌症治疗已进入了精确的靶向治疗时代。有针对性的治疗需要精确的指导,从而选择性地杀死癌细胞,从而减少对健康组织的损害。因此,探索肿瘤治疗的潜在靶标的需求至关重要。依赖细胞周期蛋白的激酶调节亚基1B(CKS1B)是保守的细胞周期蛋白激酶亚基1(CKS1)蛋白家族的成员,在细胞循环中起着至关重要的作用。大量研究表明,CKS1B与许多人类癌症的发病机理有关,并且与耐药性密切相关。在这里,我们描述了当前对CKS1B细胞功能及其潜在机制的理解,总结了CKS1B作为癌症治疗靶点的最新研究,并讨论CKS1B作为治疗靶点的潜力。
CD36 正在成为癌症治疗的一个新靶点。1,2 CD36 是细胞表面蛋白 B 类清道夫受体家族的成员,可促进游离脂肪酸的吸收以进行脂质代谢。3 CD36 通过促进癌症转移、支持耐药性和调节肿瘤免疫来促进肿瘤生长。1,4 最近的研究表明,CD36 在卵巢肿瘤中上调。5,6 与肿瘤微环境中的脂肪细胞相互作用导致 CD36 上调,从而增强卵巢肿瘤转移。2 基于 CD36 的疗法,包括单克隆抗体和多肽,已被证明可有效抑制癌症转移。1 然而,就卵巢癌的耐药性而言,CD36 的作用尚不清楚,也没有关于利用 CD36 进行穿梭疗法以靶向耐药卵巢癌细胞的报道。越来越多的证据表明,线粒体在卵巢癌细胞的耐药性中起着关键作用。7-9 最近的一项研究表明,耐药性卵巢癌细胞的线粒体氧化磷酸化增加。10 线粒体靶向药物,如盐霉素和氯硝柳胺,已显示出通过削弱氧化磷酸化来克服耐药性的活性。11-13 然而,系统性毒性限制了这些药物在