委员会正在麻省理工学院资助一项关于冶金结构对低碳钢脆性断裂影响的研究。随函附上该研究的第一份进度报告,编号为 SSC-102,题为《两种船用钢的微观结构与夏比冲击和低温拉伸性能的关系》,作者为 WS Uwen、DH Whitmore、CP Sullivan、BL Averbach 和 Morris Cohen。
从图 8A 的 SEM 结果中还可以观察到,纯 EP 树脂的断口形貌具有非常光滑的横截面和光滑的结构,呈现出明显的河流状形貌,这是典型的脆性断裂特征,表明纯 EP 树脂表现出有限的力学性能。然而,当添加适当含量的 S-TiO 2 (4.0 wt%) 时,EP 树脂的
作为其在脆性断裂领域研究工作的一部分,SIP 结构委员会正在麻省理工学院赞助一项关于冶金学对船用钢断裂行为影响的研究。 附有此项目的第四个进展报告 SSC-114,题为“铁素体带状对低碳钢冲击性能的影响”:作者 W. -S. Owen, J. Coen's 和 B.' L. Averbach。 , ...该项目正在美国国家科学院国家研究委员会船舶钢材委员会的咨询指导下进行。“,。‘,,。,,,,‘,,。 \ !$$,-,。!本报告正在分发给与船舶结构委员会工作有关或参与其工作的个人和团体。请将我所掌握的任何意见提交给船舶结构委员会秘书处。;’,‘,,“\ ,,
应变和温度历史对结构钢延展性和脆性断裂起始的重要影响已在几篇早期论文中得到证实和讨论。““结果表明,在中心静态拉伸试验中,预压缺口低碳钢片将产生细小裂纹或在平均初始屈服点 10% 的应力下断裂。如果没有事先进行压缩预应变,这种钢与实验室中测试的所有其他低碳钢一样,在净截面普遍屈服之前不会断裂,尽管有最严重的缺口和低于夏比转变的温度。已经研究了冷压缩或半压缩引起的拉伸延展性的降低,包括轴向压缩钢筋 '-, ' '-l' 和反向弯曲板 ''-20 和 ~ar~:-l。 ~ 这些测试的显著结果是
在结束我的这部分报告时,我想这样说:根据我的经验,焊接结构的严重使用故障总是以某种脆性断裂告终,无论前述原因是什么 - 焊接缺陷、热变形区裂纹、疲劳裂纹等。因此,我不会低估研究焊接结构钢的脆性行为的重要性,特别是在低温和严重的焊接应力条件下,在最尖锐的缺口 (即自然裂纹) 影响下钢的强度。如今,有许多方法可以应用于此类研究,其中之一就是 NC 测试。8 该方法于 1951 年开发,用于确定焊接接头周围钢材的“标称解理强度”(附录 B)。Pelliru 及其同事最近的研究似乎遵循了与钢材断裂行为基本思想相同的思路,这些基本思想与应力、尖锐缺口和温度变化的影响有关。
尽管焊接船舶故障自 20 世纪初就已发生,但直到第二次世界大战期间大量船舶故障,人们才充分认识到这一问题。在第二次世界大战期间建造的约 5,000 艘商船中,到 1946 年,超过 1,000 艘出现了相当大的裂纹。在 1942 年至 1952 年间,超过 200 艘船舶发生了严重断裂,至少有 9 艘 T-2 油轮和 7 艘自由轮因脆性断裂而完全断成两截。自由轮中的大部分断裂始于舷侧板顶部的方形舱口角或方形切口。设计变更包括舱口角的成形和加固、舷侧板的方形切口的修复以及在各个位置添加铆接裂纹抑制器,从而立即降低了发生率
在结束我的这部分报告时,我想这样说:根据我的经验,焊接结构的严重使用故障总是以某种脆性断裂告终,无论前述原因是什么 - 焊接缺陷、热变形区裂纹、疲劳裂纹等。因此,我不会低估研究焊接结构钢的脆性行为的重要性,特别是在低温和严重的焊接应力条件下,在最尖锐的缺口 (即自然裂纹) 影响下钢的强度。如今,有许多方法可以应用于此类研究,其中之一就是 NC 测试。8 此方法是在 1951 年开发的,用于确定焊接接头周围钢材的“标称解理强度”(附录 B)。Pelliru 和同事最近进行的研究似乎遵循了与钢材断裂行为与应力、尖锐缺口和不同温度的影响相关的基本思想相同的思路。
1991 年,在 IMAX 影片拍摄泰坦尼克号沉船事件期间,法国海洋研究所潜水器鹦鹉螺号带回了第一块从泰坦尼克号沉船现场打捞出的船体材料。这块材料被大西洋海事博物馆获得,博物馆委托位于新斯科舍省哈利法克斯的大西洋国防研究机构 (DREA) 和位于渥太华的 CANMET 的研究人员测试钢材的机械性能 [2]。DREA 的 Ken KarisAllen 和 Jim Matthews 进行了夏比冲击试验,他们发现钢材在冰盐水温度下 100% 脆性断裂。这些测试的观察结果和随后的有限分析可以在《大众力学》上发表的一篇文章中找到 [3]。这引起了广泛的猜测,即船体钢在冰水中的脆性可能是导致巨轮沉没的主要因素。人们认为,尽管与冰山的撞击很小,但足以震碎船头脆弱的船体板材,导致船舶迅速进水。
1991 年,在 IMAX 影片拍摄泰坦尼克号沉船事件期间,法国海洋研究所潜水器 Nautile 带回了第一块从泰坦尼克号沉船现场打捞出的船体材料。这块材料后来被大西洋海事博物馆获得,博物馆委托位于新斯科舍省哈利法克斯的大西洋国防研究机构 (DREA) 和位于渥太华的 CANMET 的研究人员测试钢材的机械性能 [2]。DREA 的 Ken KarisAllen 和 Jim Matthews 进行了夏比冲击试验,他们发现钢材在冰盐水温度下 100% 脆性断裂。这些测试的观察结果和随后的有限分析可在《大众力学》上发表的一篇文章中找到 [3]。这引起了广泛猜测,船体钢在冰水中的脆性可能是导致巨轮沉没的主要因素。人们认为,虽然与冰山的撞击很小,但足以震碎船头脆弱的船体板材,导致船舶迅速进水。
为船板钢制定适当的断裂韧性标准是一个长期存在的问题。从第二次世界大战开始,进行了一系列研究,重点是确保船用材料具有足够的抗脆性断裂能力。最初的调查早已有记录,现在在工程界广为人知。这些研究使夏比冲击试验成为过去三十年来的断裂韧性标准,并赋予了夏比试验中 15 英尺磅能量水平今天的重要性。这些研究的贡献以及使用基于夏比冲击试验的转变温度来控制断裂的作用不可低估。它。可能是过去五十年中断裂控制发展链中最重要的步骤之一。然而,自这些试验研究完成以来,船板的材料和服务类型发生了许多变化。一般而言,从 1945 年到今天,强度水平和板材厚度趋于增加,因此,过去用于控制船舶使用的板材断裂韧性的标准现在可能需要根据当今使用的成分和厚度进行重新审查,这是很自然的。