在结束我的这部分报告时,我想这样说:根据我的经验,焊接结构的严重使用故障总是以某种脆性断裂告终,无论前述原因是什么 - 焊接缺陷、热变形区裂纹、疲劳裂纹等。因此,我不会低估研究焊接结构钢的脆性行为的重要性,特别是在低温和严重的焊接应力条件下,在最尖锐的缺口 (即自然裂纹) 影响下钢的强度。如今,有许多方法可以应用于此类研究,其中之一就是 NC 测试。8 该方法于 1951 年开发,用于确定焊接接头周围钢材的“标称解理强度”(附录 B)。Pelliru 及其同事最近的研究似乎遵循了与钢材断裂行为基本思想相同的思路,这些基本思想与应力、尖锐缺口和温度变化的影响有关。
本报告介绍了为模拟船体用钢的全尺寸性能而进行的宽板拉伸试验的结果。首先通过在新开发的宽板试验机上进行的一系列十九项试验,获得了有关宽钢板快速断裂的起始和扩展的信息。试验材料是 3/4 英寸厚的压力容器钢 ASTM A212 级 B。然后将这些信息和开发的技术应用于使用厚度为 1-3/8 英寸的 ABS C 级钢进行的总共十八项试验。所有样品均为 10 英尺宽,其中 3 个样品纵向加固。试验温度范围从 -100°F 到室温环境 +75”F。疲劳裂纹或脆性珠被用作裂纹起始点,并引入了较大的残余应力。
摘要我们报告了由单晶立方ktao 3中的位错介导的室温散装可塑性,与传统的知识形成了鲜明的了解,即单晶ktao 3容易受到脆性裂解的影响。使用环状Brinell凹痕,划痕和单轴体积压缩的基于力学的组合实验方法始终显示从Mesoscale到宏观尺度的KTAO 3中的室温脱位。这种方法还提供可调的脱位密度和塑性区域尺寸。扫描传输电子显微镜分析基于激活的滑移系统为<110> {1-10}。鉴于KTAO 3作为新兴的电子氧化物的意义越来越重要,并且对调谐氧化物物理特性的脱位的兴趣越来越大,我们的发现有望引发与脱位的KTAO 3的协同研究兴趣。
发明了“傅立叶头”,这是一种新型的神经架构,利用傅立叶分析中的工具,以连续的结构学习了分配分布;使用该体系结构将决策者代理的回报提高了46%(在ICLR 2025的提交下)提出了第一种稳定自我消耗的生成模型训练的技术;在使用扩散模型的人类运动产生的情况下,使用该技术来修复模型崩溃;由4名学生研究人员组成的LED团队(ICML 2024)发明了数学上严格的方法,用于测量单词嵌入空间的空间利用的均匀性;使用新颖的指标来证明使用脆性指标(ACL 2022)
在线性和非线性工程材料中 [ 1 , 2 ]。例如,在复合材料中,弥散损伤之后是损伤局部化和裂纹形成,最终导致断裂。在准脆性材料或受到循环载荷的金属中,裂纹形成和扩展在损伤开始后迅速发生。初始或诱导各向异性在材料损伤中普遍存在,对建模和模拟提出了挑战,正如许多现有的各向异性损伤复杂公式所示 [ 3 ]。相比之下,文献中很少发现连续损伤方法对金属单晶的应用,这可能是由于特定的各向异性变形和损伤机制。[ 4 ] 解决了单晶镍基高温合金的蠕变损伤,而 [ 5 ] 中的作者提出了一个与晶体粘塑性耦合的各向异性损伤模型框架。[ 6 ] 使用粘结区模型模拟单晶裂纹沿预定义路径扩展
在结束我的这部分报告时,我想这样说:根据我的经验,焊接结构的严重使用故障总是以某种脆性断裂告终,无论前述原因是什么 - 焊接缺陷、热变形区裂纹、疲劳裂纹等。因此,我不会低估研究焊接结构钢的脆性行为的重要性,特别是在低温和严重的焊接应力条件下,在最尖锐的缺口 (即自然裂纹) 影响下钢的强度。如今,有许多方法可以应用于此类研究,其中之一就是 NC 测试。8 此方法是在 1951 年开发的,用于确定焊接接头周围钢材的“标称解理强度”(附录 B)。Pelliru 和同事最近进行的研究似乎遵循了与钢材断裂行为与应力、尖锐缺口和不同温度的影响相关的基本思想相同的思路。
抽象增塑剂通常用于赋予某些聚合物材料有吸引力的机械性能。这么小的分子添加剂也被认为是从成品中浸出的,不仅会影响物质的物理特性,而且还会影响这些化学物质在大气和人体中的分布,从而带来长期的健康和环境风险。塑料,聚合物混合物和复合材料都被据说成功地克服了刚性和脆性。该分析的目的是总结有关增塑剂如何影响可生物降解明胶膜的功能性能的最新研究。增塑剂会破坏聚合物基质的连续性,从而导致物理变化。增塑剂的塑性效果改善了膜结构,从而增加了膜的拉伸强度和延伸的延伸,并降低了水障。我们根据其化学结构和本研究的目的来区分各种类型的增塑剂,并重点介绍了多功能增塑剂应用的最新发展。
目的:甘油三酸酯葡萄糖(TYG)指数是胰岛素抵抗(IR)的指标,这也与骨代谢有关。然而,对2型糖尿病(T2DM)或骨质疏松症(OP)患者中TYG指数与脆弱性骨折之间关系的研究仍然很少。这项研究旨在探讨绝经后老年女性T2DM的TYG指数与脆弱性骨折风险之间的关联,并基于雄心勃勃的队列研究结合OP。患者和方法:在2015年1月至2020年12月之间,总共有220名带有T2DM与OP相结合的绝经后妇女有资格纳入这项研究。所有参与者每6个月每6个月进行一次跟踪,中位数为42个月。根据TYG指数的刺激物,将参与者分为三组:低级(≤8.79,n = 73),中级级别(8.80–9.32,n = 73)和高级(≥9.33,n = 74)。然后评估TYG指数与脆弱性断裂风险之间的关联。结果:在220名患者中,有46例经历了脆性骨折事件(20.9%)。多元COX回归分析表明,TYG指数与T2DM的绝经后女性中的脆弱性骨折呈正相关。此外,与低级组相比,TYG指数水平增加1.0,高级组的脆弱性裂缝风险增加了1.293倍(HR = 2.293,95%CI = 1.007-5.221,p <0.05)。Kaplan-Meier生存分析表明,高水平TYG指数的患者更可能发生脆弱性骨折(对数秩,p <0.05)。结论:我们的研究表明,TYG指数与T2DM与OP结合的绝经后妇女的脆弱性骨折密切相关。因此,应特别注意具有T2DM的绝经后老年女性与常规临床实践中的OP相结合。关键字:2型糖尿病,骨质疏松症,甘油三酸酯葡萄糖指数,脆性骨折
金属间化合物是一类特殊的金属材料,其特性使其可以在传统金属材料失效的条件下使用;这些条件包括高温、腐蚀性环境以及极端的磨蚀和粘合应力。许多金属间化合物表现出非常好的物理和机械性能,特别是非常好的热稳定性、高熔点、良好的耐腐蚀性和低密度,这使它们成为高温应用的合适候选材料。然而,这些材料的延展性有限,脆性较高,尤其是在低温下,这阻碍了它们的广泛应用。基于中间化合物的材料的用途非常广泛,但始终有必要从物理或机械性能的角度考虑特定材料的选择。它们被用作建筑材料、形状记忆材料(NiTi)、电阻炉加热元件(MoSi2)、磁性合金(Ni3Fe)、储氢材料(Mg2Ni、LaNi5)或高温材料(TiAl、NiAl),或用于强氧化环境(FeAl)。