•您可以下载此工作仅供个人使用。•您不得进一步分发材料或将其用于任何盈利活动或商业收益•如果您认为本文档违反版权,请与我们联系以提供详细信息,我们将调查您的索赔,可以自由分发此开放访问版本的URL。请将所有查询转移到puresupport@bib.sdu.dk
1巴黎脑研究所,ICM,Inserm U1127,CNRS UMR 7225,索邦大学,法国75013,巴黎,巴黎; maximilien.riche@aphp.fr(M.R.); lestrathais@gmail.com(T.L.); Alexandre.trotier@icm-institte.org(A.T。); leo.dupuis@cea.fr(l.d.); bertrand.mathon@aphp.fr(B.M.); benoit.delatour@icm-institte.org(b.d。)2索邦大学神经外科系,拉皮蒂–Salpê分类医院,法国75013; alexandre.carpentier@aphp.fr 3 Faculty of Medicine, Sorbonne University, RC 23, Brain Machine Interface, Aphp, La Piti ê -sorting Hospital, 75013 Paris, France 4 Advanced Surgical Research Technology Lab, Sorbonne University, 75013 Paris, France 5 Laboratory of Diseases Neurodée Paris-Saclay, CEA, CNRS, 18 route du Panorama, 92265 Fontenay-aux-Roses, France 6 Commissariat for Atomic Energy and Alternatives (CEA), Directorate of Fundamental Research (DRF), François Jacob Institute, Mircen, 18 route du Panorama, 92265 Fontenay-aux-Roses, France * Amandine.geraudie@icm-institte.org † These Authors contributed equally to this work.
超快激光脉冲在介电时的贝塞尔束在空间形状上形成,产生了高纵横比等离子体通道,其松弛会导致纳米渠道的形成。我们报告了纳米渠道钻孔效率的强烈增强,并通过双脉冲在10至500 ps之间的延迟隔开。这使直径降低到100 nm的纳米通道形成。实验吸收测量结果表明,钻井效率的增加是由于能量沉积的结果增加所致。纳米通道的形成对应于第二脉冲吸收的急剧变化,证明了第一个脉冲产生的相变发生。这会产生一个高度吸收的长期状态。我们的测量结果表明,它与第一个激光脉冲照明后<10 ps的时间尺度内发生的温暖玻璃的半度性化兼容。
摘要加强胶结回填材料以回收脉管和尾矿的性能对于矿产资源和采矿废物管理的可持续发展至关重要。然而,在低成本,高废物比,低碳排放和低粘合剂消耗的实际限制下,巩固了毒性,毛孔和对具有卓越特性的水泥回填材料的采矿废物的升级,这是固有的矛盾和挑战性的。这项研究报告了一种废物到富裕途径,该途径通过纤维素纳米纤维来改善胶结的螺栓回填材料,以回收采矿废物并部分取代水泥。Mechanical compression, X-ray diffraction, thermogravimetry, mercury intrusion porosimetry, scanning electron microscopy tests, fractal quantitative analyses of microstructures, and molecular dynamics simulations were carried out to reveal the action mechanism of TEMPO-modified cellulose nanofibers on cemented gangue backfill materials.分析了节气改性纤维素纳米纤维和机械纤维素纳米纤维对胶结螺栓回填材料强度的贡献的差异。The results show a series of microscopic improvements of cellulose nanofibers on cemented gangue backfill materials, including regulating cemented gel polymerization, increasing hydration nucleation, inhibiting carbonization, densifying pore structure, enhanc- ing Ca-O connections and H bonds, and preventing C-S–H fracture along interlayer water.通过纤维素纳米纤维诱导的这种胶结材料的强度和能量吸收增强,具有最佳剂量可达到30〜50%。还发现过多的纤维素纳米纤维对这种复合材料有害,主要是通过延迟水合结晶并通过捕获空气增加孔,而尽管强度恶化,但它仍然表现出改善的变形抗性和能量吸收。
实现信息处理任务的抽象最佳速率通常以正规信息度量来表征。在许多量子任务的情况下,我们不知道如何计算此类数量。在这里,我们利用最近引入的D#中的对称性,以便在各种正规化数量上获得半有限编程范围的层次结构。作为应用程序,我们提供了一个一般程序,以在正规化的叶ume频道差异以及经典能力和量子通道的两向辅助量子能力上给出有效的界限。特别是,我们可以轻微改善振幅阻尼通道的能力。我们还证明,对于固定的输入和输出尺寸,可以将任何两个量子通道之间的正则夹层r´enyi差异近似至1 /ϵ中多项式的及时time。
稀土发射器已在集成的光学源中研究了一段时间,作为激光源[1]和带有眼镜[2,3]或聚合物[4]的波导放大器。最近,它们被整合到互补的金属氧化物半导体(CMOS)驱动或兼容的SI光子芯片中,作为激光源[5],放大器[6,7]以及调节剂[8,9]。稀土发射器为开发新的主动光学功能的可能性提供了许多可能性,该功能最初集中于第四组[10]或III-V材料[11,12]。然而,需要在硅平台上的有效掺入(例如粘结[13],掩盖沉积[5,14],额外的层[15]或蚀刻[16,17],需要复杂的处理,这对实际应用可能是昂贵且有害的。尤其是Y 2 O 3和Al 2 O 3矩阵的情况,它需要电感耦合等离子体优化的蚀刻[18-20]。在这项工作中,我们提出了稀土掺杂层微发射体的创新设计,而无需使用升降加工与脉冲激光沉积(PLD)结合使用。在通过掩模(例如g。photoresist)的升降过程中,通过蚀刻的经典结构进行了蚀刻的经典结构,但在升降过程中,将材料与沉积的材料一起清除。这种方法比蚀刻更容易,避免沿蚀刻的侧壁潜在损害。尽管非常有吸引力,但提升过程的主要缺点之一是沉积过程中的底物温度。pld允许克服这种限制。升降处理是薄层图案(例如金属)或较厚层的微电子中常规的,具有低温沉积(如溅射)[21],原子层[22]或玻璃沉积[23]。的确,如果底物温度高于200°C(即光固定剂的硬烘烤温度),则提升处理不能成功。PLD是一种通常用于
脉冲神经网络 (SNN) 是神经形态计算的一个分支,目前在神经科学应用中用于理解和建模生物大脑。SNN 还可能用于许多其他应用领域,例如分类、模式识别和自主控制。这项工作提出了一个高度可扩展的硬件平台 POETS,并使用它在大量并行和可重构的 FPGA 处理器上实现 SNN。当前系统由 48 个 FPGA 组成,提供 3072 个处理核心和 49152 个线程。我们使用该硬件实现了多达四百万个神经元和一千个突触。与其他类似平台的比较表明,当前的 POETS 系统比 Brian 模拟器快二十倍,比 SpiNNaker 快至少两倍。
由 HBr/O 2 组成的等离子体通常用于硅蚀刻工艺,如栅极蚀刻工艺或浅沟槽隔离蚀刻,由于人们对此类化学反应中的硅蚀刻相当了解,因此它成为研究等离子体脉冲对气相和等离子体-表面相互作用的影响的最佳选择。目标是了解连续等离子体和脉冲等离子体之间的根本区别,以及等离子体产生的变化如何影响最终的图案转移。在论文 I 中,我们展示了等离子体脉冲对离子通量和离子能量的强大影响。1 结果显示,占空比 (dc) 而不是脉冲频率对这些参数有显著影响。在本文中,我们重点研究等离子体脉冲对 HBr/O 2 等离子体中的蚀刻机制和图案转移的影响。先前的实验已经证明脉冲等离子体中等离子体引起的损伤有所减少,2 – 4 通常通过使用扫描电子显微镜 (SEM) 成像、椭圆偏振测量和 X 射线光电子能谱 (XPS) 对侧壁钝化层 (SPL) 进行形貌分析。许多作者已经研究了 HBr/O 2 等离子体对硅和 SiO 2 的蚀刻机理。5 – 13 下面总结了 Si 和 SiO 2 蚀刻的基本机理,其中考虑了原料气中极小比例的氧气。含溴、氢和(较少量)氧的离子撞击硅表面、分解、破坏键并形成富含卤素的非晶层,也称为反应蚀刻层 (REL),其中含有 H、Br 和一些 O 原子。非晶层的厚度和成分会根据离子能量、压力和原料气流量而变化。由于氢原子比其他粒子小得多,它们可以更深地渗透到硅层中,然后硅原子可以因碰撞而解吸,或可以融入挥发性物质,如 SiBr 4。含氢分子如 SiH 2 Br 2 的挥发性更强,13 但硅蚀刻并不