摘要 — 本文介绍了用于 Ka 波段单脉冲雷达跟踪的调制超表面天线的设计、制造和测试。天线由圆形、薄接地介电层组成,该介电层由形状和大小经过调制的金属贴片纹理印刷而成。贴片层可以建模为空间可变的电容阻抗片,它与接地平板贡献一起提供整体调制电感边界条件。天线孔径被分成四个相同的角象限,每个角象限在由单个单极子发射器激发时都会辐射独立的宽边波束。四个发射器中的每一个都会激发 TM 圆柱形表面波 (SW),该波被超表面逐渐转换为漏波 (LW)。通过适当设计超表面调制,4 个子孔径被虚拟分开。为此,校准了 LW 衰减常数以充分释放每个单独的 SW,从而防止相邻区域之间的相互作用。因此,印刷结构不受任何物理分离的限制,而仅受等效边界条件的连续变化的限制。通过将源激励与简单的相位方案相结合,可获得单脉冲型线性偏振光束。值得注意的是,该解决方案不会影响结构的整体轻便性、低轮廓、馈源简单性和低制造成本,这相对于更传统的基于波导的解决方案具有固有优势。
暴露于超短脉冲激光器(UPL)的聚合物(UPL)经历了一系列物理和化学变化,这些变化在从材料加工到高级光子学和生物医学的应用中起着关键作用。为了阐明UPL与聚合物材料的相互作用,假设聚碳酸酯(PC)是暴露于中等能量的激光脉冲的测试材料,则研究了超快现象,例如载体动力学,重组和松弛。为介电材料开发的理论模型被扩展,以描述PC的未开发的激发和载体动力学,而femtsecond瞬时吸收光谱用于阐明材料的响应和超快动力学的演变。使用理论模型来解释实验测量结果表明,能量水平的存在促进了自我捕获的激子在传导和价带之间的自我转移的形成(低于传导带的2.4-2.8 eV)。它还可以预测电子播寿命(约110-150 fs),重组时间(约34 ps)和由于kerr效应而折射率的非线性部分(𝑛2值范围为1.1-1.5×10 -16 cm 2 /w)。此外,还强调了多光子辅助电离的主要特征,而还计算出光学崩溃阈值并发现等于2.55×10 12 W/cm 2。结果预计将支持旨在阐明强烈超短激光脉冲与聚合物材料相互作用的未来努力,这对于优化这些材料的制造过程至关重要。
我们描述了如何将轴棱镜和透镜直接组合起来,为激光材料加工应用提供简单而有效的光束整形解决方案。我们产生了 1550 nm 的高角度伪贝塞尔微光束,这很难通过其他方法产生。结合飞秒脉冲的适当拉伸,我们可以获得半导体内部的优化条件,从而开发出高纵横比折射率写入方法。使用超快显微镜技术,我们用 200 fs 和 50 ps 脉冲表征了硅内部传递的局部强度和触发的电离动力学。虽然两种情况下产生的等离子体密度相似,但我们表明,重复的皮秒辐照会在激光束方向上自发地产生永久性的改变,从前表面损伤到辐照硅晶片的背面。与当今为电介质演示的直接微爆炸和微通道钻孔条件类似的条件仍然无法实现。尽管如此,这项工作证明了能量密度高于以前在半导体中实现的水平,并且是一种新颖的冲击写入模式,可以在硅中创建长宽比超过 ~700 的结构,而无需任何光束运动。沿观察到的微等离子体通道估计的电导率瞬态变化和测量的接近光速的电离前沿支持了在 GHz 重复率下光学可控的垂直电连接的设想。根据测量的超过 10 −2 的正折射率变化,通过冲击写入获得的永久性硅改性是光导结构。这些发现为电气和光学硅通孔的独特单片解决方案打开了大门,而硅通孔是 3D 芯片堆栈中垂直互连的关键元件。
与脉冲设计方法相关的脉冲合成器的拓扑结构基于 H 桥。尽管已经提出了在 UWB 应用中使用 H 桥进行脉冲整形的建议 [2],但所提出的结构已被修改,以允许对脉冲包络进行数字控制。此外,如图 4.a 所示,H 桥由差分压控环形振荡器 (VCO;详见 [7]) 驱动(而不是 [2] 中的压控延迟线),以便能够生成 IEEE 标准所要求的高持续时间脉冲。VCO 还交替控制传输门耦合 (TGU1、TGD1) 和 (TGU2、TGD2),以交替将电流送入负载,从而产生零均值脉冲。因此,如图 4.a 所示,脉冲包络由 4 个传输门组 TGx(TG1 至 TG4)控制,这些传输门组修改了进入输出负载的电流。信号 Sx(S1 至 S4),
新加坡国立大学 (NUS) 的研究人员发现,非侵入性磁脉冲可增强乳腺癌化疗的有效性,并可能减少患者的副作用。对癌细胞使用短暂的靶向磁脉冲可增加其对广泛使用的化疗药物阿霉素的吸收。新加坡国立大学健康创新与技术研究所首席研究员副教授 Alfredo Franco-Obregon 表示,随着更多药物进入肿瘤并使其缩小,留在体内循环中攻击健康细胞的药物就会减少,从而减少化疗常常导致的副作用。在实验室中接受 10 分钟的磁场照射也会将化疗药物的浓度降低一半。 “令人鼓舞的是,这种机制在低药物浓度下效果最强,使我们能够更有效地靶向癌细胞,同时减少化疗对健康组织的负担,”Franco-Obregon 教授说。虽然这种方法已经在实验室中得到证实,但新加坡国立大学癌症研究所的助理教授 Joline Lim(也是研究团队的一员)希望进行更多临床研究,以确定这些方法是否
使用激光器以高空间精度实现硅中受控的晶体相变,承诺在包括硅光子学在内的半导体技术中新的制造溶液。最近的改善非晶厚度位置超快激光器作为应对当前挑战的最佳工具。在这里,审查了有关硅转化的文献,并与新的实验数据相辅相成。这包括非晶态和消融响应,这是脉冲持续时间的函数(𝝉 = 13.9至134 fs 𝝀 = 800 nm)和激光波长(𝝀 = 258至4000 nm,𝝉 = 200 fs脉冲)。对于脉冲持续时间依赖性的SI研究(111),非晶化的阈值随持续时间较短而降低,强调了在考虑条件范围内非线性吸收的显着性。对于波长依赖性研究,非晶化阈值从𝝀 = 258急剧增加到1030 nm,其次是接近恒定的行为至𝝀 = 3000 nm。相反,在这些指定的范围内的消融阈值增加。还讨论了在Si(111)和Si(100)上获得的非晶化厚度的差异,并识别出异常大的宽度范围,以在𝝀 = 258 nm处进行非晶化。最后,解决了与相互作用非线性无关的横向分辨率的问题。
心房颤动 (AF) 是最常见的心脏病之一。预计未来几十年 AF 的患病率将翻一番 [1]。导管消融对有症状的复发性阵发性或持续性 AF 患者有益 [2]。由于需求的增长和技术的发展,手术的数量正在增加。脉冲场消融 (PFA) 是最近推出的最新导管消融方法之一,尽管它有许多优点,但也有缺点,例如 X 射线暴露量较高。一名有阵发性 AF 病史的 63 岁女性在深度镇静下接受了肺静脉隔离,同时使用 FARAPULSE™ PFA 系统和 EnSite Precision™ 进行肺静脉隔离。在手术过程中,进行了单次房间隔穿刺,随后进行了旋转血管造影。该地图是在操纵集成到 EnSite 系统中的 FARAPULSE 导管时获得的。使用篮形导管对每根肺静脉进行四次应用,使用花形导管进行另外四次应用。治疗静脉之间的其他病变。隔离所有静脉后,进行重新封堵以确认入口阻滞(图 1)。用填塞物确认出口阻滞。手术没有并发症,患者第二天出院回家。所述病例是波兰第一例使用专用于 FARAPULSE 系统的特定附加 EnSite 软件的病例。这种新颖的方法能够识别消融的确切位置,并通过执行电解剖图来更好地确认入口阻滞
C. Cilleros、A. Dupré、J. Vincenot、D. Melodelima。开发简单的体外动脉模型并评估脉冲流对高强度聚焦超声消融的影响。生物医学工程创新与研究,2021 年,42 (2),第 112-119 页。�10.1016/j.irbm.2020.11.004�。�hal-04745056�
研究了激光波长对原子探针断层扫描(APT)中元素组成分析中精度的影响。系统比较了三种不同的商业原子探针系统 - LEAP 3000 x HR,LEAP 5000 XR和LEAP 6000 XR-用于研究较短激光波长的锡模型涂层,尤其是在深紫外线(DUV)范围内,对蒸发行为的影响。发现的结果表明,较短波长的使用提高了元素组成的准确性,而主潮具有相似的电场强度。因此,热效应减少,进而提高质量分辨能力。这项研究的一个重要方面包括估计不同工具的能量密度比。波长的降低伴随着由于激光斑点尺寸较小而导致的能量密度增加。此外,还研究了检测器技术的进步。最后,确定探测器的死时间,并评估了死区,以调查具有LEAP 6000 XR的氮化物测量中的离子堆积行为。