昆虫识别和保存代金券标本是害虫诊断和监视活动不可或缺的;然而,由于捕获数量高以及样品对环境损害的敏感性,散装昆虫是诊断性的挑战。许多昆虫陷阱捕获依赖于物种鉴定的形态特征的检查,这是一项耗时且高技能的任务,因此需要更有效的分子方法。许多大量的DNA提取方法需要对样品进行破坏性采样,从而导致损坏或完全破坏的代金券标本。我们开发了一种廉价,快速,散装的DNA分离方法,该方法将标本保存为固定的保证金,该标准可以允许攻击后的形态检查和纳入昆虫参考收集中。我们的方案使用了一组暂时的昆虫来验证,这些昆虫耗时以识别大量的果蝇(双翅目:tephritidae:dacinae)。在开发我们的方法时,我们根据以下标准评估了现有方案:对形态的影响;适合大型陷阱捕捞的适用性;成本;易于处理;并应用于下游分子诊断分析,例如实时PCR和metabarcoding。我们发现,快速分离DNA提取的最佳方法是将蝇浸入NaOH:TE缓冲液在75°C中浸入10分钟,而无需蛋白酶K或洗涤剂。这种热索克方法产生了足够的高质量DNA,同时保留了适合物种水平鉴定的形态学特征,样品中最多20,000蝇。裂解物在下游分析中表现良好,例如环路介导的等温扩增(LAMP)和实时PCR应用,而对于元键块PCR,裂解物需要额外的柱纯化步骤。这种方法的开发是提高我们准确检测在散装陷阱中捕获的昆虫的能力所需的关键步骤,无论是生物多样性,生物安全还是有害生物管理目标。
摘要:引入非土著物种(NIS)是对欧洲沿海生态系统完整性的主要威胁之一。基于DNA的评估已越来越多地用于监视NIS。但是,基于DNA的分类学分配的准确性在很大程度上取决于DNA条形码参考库的完成和可靠性。因此,我们旨在编译和审核欧洲发生的海洋无脊椎动物NIS的DNA条形码参考库。为此,我们使用三个数据库编制了NIS列表:欧洲外星物种信息网络(EASIN),关于水生非土著和隐性物种(Aquanis)的信息系统以及引入海洋物种(WRIMS)的世界登记册。对于每个物种,我们从生命数据系统(BOLD)的条形码(BOLD)中检索了可用的细胞色素C氧化酶亚基I(COI)线粒体基因序列,并使用了条形码,审计和等级系统(BAGS)来检查形成型名称和条形码索引编号(BINS)之间的一致性。从编译的1249种物种中,大约42%的物种有BOLD的记录,其中56%是不和谐的。我们进一步分析了这些案例,以确定不一致的原因并归因于其他注释标签。成功解决了35%,这增加了元法数据集中检测到的NIS数量的12个。但是,相当数量的垃圾箱仍然不一致。参考条形码记录的可靠性在NIS的情况下尤其重要,如果不需要时,错误的识别可能会触发动作或无所作为。
DNA甲基化[5-甲基环胞嘧啶(5MC)]是脊椎动物胚胎创世纪所需的抑制性基因调节标记。基因组5MC通过DNA甲基转移酶的作用严格调节,DNA甲基转移酶沉积了5MC和十个时期的易位(TET)酶,该酶通过形成5-羟基甲基霉素(5HMC)而参与其主动去除。TET酶对于哺乳动物的胃胃和椎间发育增强剂的激活至关重要。但是,迄今为止,缺乏对5HMC功能,丰度和基因组分布的清晰图像。通过使用基础分辨率5MC和5HMC定量,在海胆和叶片胚胎发生过程中,我们阐明了非脊椎动物5HMC和TET酶的作用。我们发现,这些无脊椎动物氘代表使用TET酶来靶向与发育基因相关的调节区域的脱甲基化,并表明鉴定出5HMC调节的基因的补充是对脊椎动物的保守的。这项工作表明,从调节区域中删除5MC是氘代表胚胎发生的共同特征,暗示了对主要基因调节模块的意外深层保护。
ramiro 布莱纳·博特瓦(Bryana Boteva),12岁的布雷曼德 ,1帕尔·盖赫(PálGéher),16 lianne gensler,17约瑟夫·赫尔曼(Joseph Hermann),18曼努(Manu) ,19 uta kiltz ,7安娜·米尔托(Anna Milto),26维多利亚·纳瓦罗(Victoria Navarro)马丁·鲁德瓦利特(Martin Rudwaleit) heijde 1
为了成功适应环境,动物会不断调整自己的行为,确保其适应当前环境。它们的神经系统必须快速处理传入的刺激,以区分相关信息和不相关信息,从而实现集中注意力并支持记忆形成和行为调节等更高级的执行功能。感觉过滤在一定程度上由习惯化这个基本且保守的过程介导 [1]。习惯化是所有动物都表现出的最简单的非联想学习形式,其定义为对重复的、不显著的刺激的反应性逐渐下降 [2],并且不是由于感觉适应或运动疲劳 [3]。值得注意的是,已有研究表明,动物也能对威胁性和潜在致命的刺激形成习惯,并以此作为修改其行为策略以避免危险刺激的一种手段 [4]。习惯化的行为参数和细胞机制受突触可塑性机制控制,这种机制通过改变神经递质信号来调节兴奋和抑制的平衡[5-9],但我们对介导习惯化的关键基因的了解并不完整。过滤机制受损是许多常见神经系统疾病的标志,因此习惯化缺陷已被用作诊断工具[10]。习惯化缺陷与自闭症谱系障碍(ASD)[11-13]、脆性X 综合征[14]、精神分裂症[15]、亨廷顿氏病[16]、注意力缺陷多动障碍(ADHD)[17]、帕金森病[18]、图雷特综合征[19]和偏头痛[20]有关。剖析调节感觉过滤的潜在遗传机制可帮助我们了解疾病的病因、确定疾病的遗传易感性以及找到潜在的治疗靶点。了解习惯化的遗传、细胞和行为方面对于理解正常神经回路如何处理感觉信息至关重要。斑马鱼可以表现出受经验调节的感觉诱发运动行为(到受精后五天(dpf)为止)。声学刺激会在斑马鱼身上引发两种不同的运动反应之一:短延迟 C 形弯曲(SLC),通常是对高强度刺激的反应,以及长延迟 C 形弯曲(LLC),通常是对低强度刺激的反应 [ 21 ]。这些行为由简单、特征明确的回路驱动,可进行可视化和基因操作 [ 22 ]。 SLC 是由激活两个双侧 Mauthner 后脑网状脊髓神经元之一触发的,这两个神经元是听觉惊吓反应 (ASR) 的指挥神经元 [ 23 ]。Mauthner 神经元在功能上类似于尾桥脑网状核 (PnC) 的巨型神经元,这些神经元从耳蜗神经接收输入,并输出到脊髓中的运动神经元,从而驱动哺乳动物的惊吓反应 [ 24 – 26 ]。虽然斑马鱼的神经回路比哺乳动物的简单,但正是这种简单性使其成为研究感觉过滤背后的遗传、细胞和行为机制的有用工具。为了确定对介导习惯化学习很重要的基因,我们将全基因组正向遗传筛选 [ 27 ] 与高通量平台相结合,以进行无偏的听觉惊吓分析 [ 28 ]。这种方法产生了几个听觉惊吓习惯化所需的基因,包括棕榈酰转移酶亨廷顿相互作用蛋白 14 (hip14) [ 29 ],
1 美国罗彻斯特梅奥诊所生物化学与分子生物学系;2 美国贝塞斯达国立卫生研究院国家人类基因组研究所转化与功能基因组学分支机构;3 美国俄克拉荷马城俄克拉荷马医学研究基金会功能与化学基因组学项目;4 美国艾奥瓦州立大学遗传学、发育与细胞生物学系;5 加拿大多伦多 Unity Health 与多伦多大学圣迈克尔医院李嘉诚知识研究所斑马鱼高级药物发现中心和基南生物医学科学研究中心;6 美国罗彻斯特梅奥诊所心血管医学系;7 美国巴尔的摩卡内基科学研究所胚胎学系;8 美国罗彻斯特梅奥诊所临床基因组学系;9 美国罗彻斯特梅奥诊所耳鼻喉科系; 10 印度德里科学与工业研究理事会基因组学与综合生物学研究所基因组学与分子医学部;11 美国费城天普大学生物系;12 德国科隆大学动物学研究所发育生物学部
靶序列,并使用 PrimeSTAR Max(TaKaRa,日本草津)的寡核苷酸和引物 sgRNA-RV 从 pDR274 载体 26 进行 PCR 扩增 sgRNA 模板,并使用 NucleoSpin 凝胶和 PCR 清理试剂盒(MACHEREY-NAGEL,德国迪伦)进行纯化。使用 CUGA7 gRNA 合成试剂盒(日本东京 Nippon Gene)合成 sgRNA,并使用 NanoDrop Lite 分光光度计(美国马萨诸塞州沃尔瑟姆 Thermo Fisher Scientific)测量其浓度。注射溶液由无 RNase 水中三种 sgRNA(每种 20 pg)、Cas9 蛋白(1 nM,M0646,美国马萨诸塞州新英格兰生物实验室)和酚红(P0290,Sigma-Aldrich)组成。将该溶液注射到1细胞期受精卵或4细胞期胚胎的细胞体中,产生遗传嵌合体,并
糖皮质激素是由肾上腺皮质或肾间组织细胞产生的脊椎动物类固醇激素,在不断变化且偶尔有压力的环境条件下动态地发挥作用以维持体内平衡。它们通过结合并激活核受体转录因子,即糖皮质激素和盐皮质激素受体(分别为 MR 和 GR)来实现这一目的。由于 GR 对内源性糖皮质激素(皮质醇或皮质酮)的亲和力较低,因此主要负责传递昼夜节律和超昼夜糖皮质激素振荡传递的动态信号以及对急性应激产生的瞬态脉冲。这些动态是应激反应的重要决定因素,在系统层面上,它们是由下丘脑-垂体-肾上腺/肾间轴的前馈和反馈信号产生的。在接收细胞内,GR 信号动力学由 GR 靶基因和负反馈调节因子 fkpb5 控制。慢性压力可能通过不完善的生理适应改变信号传导动力学,从而改变系统和/或细胞的设定点,导致皮质醇水平长期升高和异质负荷增加,从而损害健康并促进疾病的发展。当这种情况发生在早期发育过程中时,它可以“编程”压力系统的反应性,并对异质负荷和疾病易感性产生持续影响。一个重要的问题是参与这种编程的糖皮质激素反应基因调控网络。最近的研究表明,klf9 是一种普遍表达的 GR 靶基因,它编码一种对代谢可塑性和神经元分化很重要的 Krüppel 样转录因子,是影响细胞糖皮质激素反应的 GR 信号的前馈调节器,这表明它可能是该调控网络中的一个关键节点。
入侵物种解决方案中心衷心感谢其成员和合作伙伴为支持其活动而提供的资金和实物捐助。入侵动物有限公司负责管理入侵物种解决方案中心。该项目获得了澳大利亚政府农业、水利和环境部的资助,以及联邦科学与工业研究组织 (CSIRO)、西澳大利亚州初级产业和区域发展部 (WA DPIRD) 和西澳大利亚州生物多样性、保护和景点部 (WA DBCA) 的实物支持。我们真诚感谢许多参与者抽出时间参加两次利益相关者研讨会,这些研讨会是在 CSIRO 社会科学人类研究伦理委员会 (CSSHREC) 授权 144/19 下举办的,由 PiqueGlobal Ltd. 的 David Romano 独立主持。我们感谢指导委员会在整个项目中的指导和领导,以及 Krista Verlis 和 Raghu Sathyamurthy 对报告草案的评论。本文件由 Wendy Ruscoe、Susan Campbell、Lucy Carter、Aditi Mankad、Peter Brown、Margaret Byrne、Kevin Oh、Mark Tizard 和 Tanja Strive 编写。本文件应引用为:Wendy Ruscoe、Susan Campbell、Lucy Carter、Aditi Mankad、Peter Brown、Margaret Byrne、Kevin Oh、Mark Tizard 和 Tanja Strive。(2021 年)脊椎动物害虫的遗传生物防治技术:决策框架摘要。向入侵物种解决方案中心提交的报告。堪培拉。由澳大利亚堪培拉入侵物种解决方案中心出版 www.vasives.com.au 印刷版 ISBN:978-1-925727-30-2 网站版 ISBN:978-1-925727-30-2 本报告可出于研究、讨论、记录保存、教育用途或其他公共利益的目的引用,但任何此类引用均承认入侵物种解决方案中心和出版物的作者。© 2021 Invasive Animals Ltd 封面图片:家鼠作者:Peter Brown © CSIRO。欧洲兔作者:Lawrence Sanders。欧洲鲤鱼作者:Marc Ainsworth。海蟾蜍作者:Tyler Monachino。
脊椎动物进化中的水对土地过渡提供了一个异常的机会,可以考虑计算大脑新生态的计算。所有的感觉方式都会改变,尤其是由于空气与水作为培养基而引起的大大扩大的视觉感官,并通过移动眼睛和颈部扩展。四肢的繁殖,随着进化为利用土地上生活方面的发展,是一项可比的计算挑战。由于土地上生物的总质量比质量水下大的一百倍,计算改进有望获得丰厚的回报。在水中,中脑底座坐标接近/避免通过水流和动物的身体状态和学习的情况进行决策。在土地上,必须解决感觉表面和效应子的相对运动,并增加了背骨的计算体系结构,例如顶叶皮层。对于大脑和悠久的土地居民来说,做出正确的决定时,做出了正确的决定,这意味着死亡可能是计划的基础,这使动物可以在颁布之前从假设的经验中学习。在基底神经节/额叶皮层电路中的价值加权,记忆全景的整合,以及海马及其相关皮质的同种中心认知图成为一种认知习惯习惯习惯性的过渡,与生态学的变化相同。
