Kingdom A BSTRACT 磁共振成像 (MRI) 是获取精确解剖信息的重要方式,它在诊断和治疗计划的医学成像中起着重要作用。近年来,由于深度学习技术(特别是生成对抗网络 (GAN))的引入,图像合成问题发生了革命性的变化。这项工作研究了深度卷积生成对抗网络 (DCGAN) 在生成高保真和逼真的 MRI 图像切片方面的应用。建议的方法使用具有各种脑部 MRI 扫描的数据集来训练 DCGAN 架构。当鉴别器网络辨别创建的切片和真实的切片时,生成器网络会学习合成逼真的 MRI 图像切片。生成器通过对抗性训练方法改进了其生成与真实 MRI 数据非常相似的切片的能力。结果表明,DCGAN 有望在医学成像研究中实现多种用途,因为它们表明,如果我们对它们进行连续多次训练,它可以有效地生成 MRI 图像切片。这项工作增加了深度学习技术在医学图像合成中的应用研究范围。可以生成的切片具有增强数据集的能力,可以在深度学习模型的训练中提供数据增强,并且提供了许多功能以使 MRI 数据清理更容易,并且提供了三个随时可用且干净的数据集,可用于主要解剖计划。关键词 磁共振成像、生成对抗网络、深度卷积生成对抗网络、Nifty、OpenNeuro 1。介绍 该项目探索使用深度卷积生成对抗网络生成逼真的 MRI 图像切片。所提出的方法使用干净且准备好的矢状脑 MRI 扫描数据集训练 DCGAN 架构。生成器网络学习合成逼真的 MRI 图像,而鉴别器网络区分制造的和真实的图像。通过对抗性训练策略,生成器提高了其生成与真实 MRI 数据紧密匹配的切片的能力。这项工作为使用深度学习方法进行合成医学成像的研究做出了贡献。提出的研究目标如下:
摘要:近年来,医学图像分析在早期阶段检测疾病方面起着至关重要的作用。医疗图像迅速用于解决人类问题的各种应用。因此,需要复杂的医疗特征来开发诊断系统供医生提供更好的治疗。传统的异常检测方法遭受给定数据中异常区域的错误识别。视觉效果检测方法用于定位异常,以提高拟议工作的准确性。本研究探讨了视觉显着性图在阿尔茨海默氏病(AD)分类中的作用。自下而上的显着性对应于图像特征,而自上而下的显着性在磁共振成像(MRI)脑图像中使用域知识。提出的方法的新颖性在于使用椭圆形局部二进制模式描述符进行低级MRI表征。类似椭圆的拓扑有助于从不同方向获取特征信息。在不同方向上广泛定向特征覆盖了微模式。阿尔茨海默氏病阶段的大脑区域是从显着图中分类的。多内核学习(MKL)和简单而有效的MKL(SEMKL)用于从正常对照组中对阿尔茨海默氏病进行分类。所提出的方法使用了绿洲数据集,并将实验结果与八种最先进的方法进行了比较。提出的基于视觉显着性的异常检测在准确性,敏感性,特殊性和F量的方面产生可靠的结果。
。CC-BY-NC 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 6 月 18 日发布。;https://doi.org/10.1101/2024.02.07.579070 doi:bioRxiv 预印本
在本文中,我们提出了一个可解释的脑图对比学习框架,旨在通过无监督的方式学习脑图表征,以用于疾病预测和病因分析。我们的框架包含两个关键设计:首先,我们利用可控的数据增强策略来扰动不重要的结构和属性特征以生成脑图。然后,考虑到健康和患者脑图的差异较小,我们引入硬负样本评估来加权对比损失的负样本,这可以学习更具判别性的脑图表征。更重要的是,我们的方法可以观察到显著的大脑区域和连接以用于病因分析。我们在三个真实的神经影像数据集上进行了疾病预测和可解释分析实验,以证明我们框架的有效性。
背景和目的:脑映射是研究中枢神经系统 (CNS) 的解剖和功能。脑映射有许多技术,这些技术在不断变化和更新。从一开始,脑映射就是侵入性的,并且脑映射需要对暴露的大脑进行电刺激。然而,如今的脑映射不需要电刺激,而且通常不需要患者的任何复杂参与。为了进行脑映射,功能性和结构性神经成像起着至关重要的作用。脑映射技术包括非侵入性技术(结构和功能性磁共振成像 [fMRI]、扩散 MRI [dMRI]、脑磁图 [MEG]、脑电图 [EEG]、正电子发射断层扫描 [PET]、近红外光谱 [NIRS] 和其他非侵入性扫描技术)和侵入性技术(直接皮质刺激 [DCS] 和颈动脉内阿米他测试 [IAT] 或 wada 测试)。
• 全脑神经胶质细胞衰老基因特征,具有空间定义的变化 • 白质中的神经胶质细胞衰老加速 • 复原干预对基因表达具有区域特异性影响 • 与神经退行性疾病有关的基因显示出区域衰老模式简而言之:衰老小鼠大脑的时空转录组图确定了神经胶质细胞衰老的区域特异性加速,特别是在白质中,对复原干预的独特区域反应,以及与人类神经退行性疾病相关的基因的区域年龄相关表达模式。
从 MRI 重建和分割皮质表面对于广泛的大脑分析至关重要。然而,大多数方法遵循多步骤的缓慢过程,例如连续的球面膨胀和配准,这需要相当长的计算时间。为了克服由这些多步骤引起的限制,我们提出了 SegRecon,这是一种集成的端到端深度学习方法,只需一个步骤即可直接从 MRI 体积联合重建和分割皮质表面。我们训练一个基于体积的神经网络来预测每个体素到多个嵌套表面的有符号距离以及它们在图谱空间中对应的球面表示。例如,这对于联合重建和分割白质到灰质界面以及灰质到脑脊液(软脑膜)表面很有用。我们通过在 MindBoggle、ABIDE 和 OASIS 数据集上进行的一组全面实验来评估我们的表面重建和分割方法的性能。我们发现,重建误差小于 0.52 毫米,而与 FreeSurfer 生成表面的平均 Hausdorff 距离则小于 0.97 毫米。同样,分割结果显示,与 FreeSurfer 相比,平均 Dice 值提高了 4% 以上,此外,在标准台式机上,计算时间从几小时大幅加快到几秒。
摘要。快速磁共振成像(MRI)序列在临床环境中高度要求。但是,成像信息不足会导致诊断困难。MR图像超分辨率(SR)是解决此问题的一种有希望的方法,但是由于获取配对的低分辨率和高分辨率(LR和HR)图像的实际困难,其性能受到限制。大多数现有的方法都使用倒数采样的LR IMENES,由于俯瞰域距离或由未知和复杂的降解引起的近似差而可能不准确。在这项研究中,我们提出了一个基于真实但未配对的HR/LR图像的1.5T MR脑图像的域距离调整SR框架。我们的框架工作利用了学习任意未配对图像的抽象表示并适应域间隙的能力,从而使其可行,以证明现实的下采样。此外,我们提出了一个新颖的生成对抗网络(GAN)模型,该模型集成了包含编码器,骨干和解码器的发电机,以及一个基于UNET的歧视器和多尺度感知损失。这种方法产生了令人信服的纹理,并成功地恢复了众所周知的公共数据集上过时的1.5T MRI数据,在感知和定量评估中的最先进的SR方法表现优于最先进的SR方法。
多年来,许多研究人员似乎都做出了相同的观察:大脑和语言模型的激活表现出一些结构相似性,使得从神经记录和计算语言模型中提取的特征之间能够进行线性部分映射。为了评估为这一观察积累了多少证据,我们调查了 30 多项研究,涵盖 10 个数据集和 8 个指标。在得出结论之前,积累了多少证据,如果有的话,还缺少什么?我们对文献中使用的评估方法的分析表明,一些指标不那么保守。我们还发现,目前积累的证据仍然不明确,但与模型大小和质量的相关性为谨慎乐观提供了理由。