丘脑下核(STN)对于行为控制至关重要。因此,其失调与包括帕金森氏病在内的神经和神经精神疾病有关。针对STN的深脑刺激(DBS)成功缓解了帕金森运动症状。 但是,情绪低落和抑郁症是情感副作用。 stn与para -Stn相邻,与食欲和厌恶行为相关。 针对STN的 DB可能会无意中调节para -Stn,导致厌恶。 另外,STN介导了厌恶。 为了研究STN和厌恶之间的因果关系,使用小鼠的光遗传学来解决情感行为。 选择性启动子允许STN(例如PITX2)与Para -STN(TAC1)解离。 急性光刺激会通过STN和Para -Stn厌恶。 但是,只有STN刺激提示引起有条件的回避,并且只有STN刺激中断正在进行的糖自助给药。 电生理记录确定了苍白神经元中突触后反应,以及腹侧pallidum中STN末端的选择性光静静态,复制了STN诱导的厌恶。 将STN识别为厌恶学习的来源,为情感影响贡献了神经生物学的基础。针对STN的深脑刺激(DBS)成功缓解了帕金森运动症状。但是,情绪低落和抑郁症是情感副作用。stn与para -Stn相邻,与食欲和厌恶行为相关。DB可能会无意中调节para -Stn,导致厌恶。另外,STN介导了厌恶。为了研究STN和厌恶之间的因果关系,使用小鼠的光遗传学来解决情感行为。选择性启动子允许STN(例如PITX2)与Para -STN(TAC1)解离。急性光刺激会通过STN和Para -Stn厌恶。但是,只有STN刺激提示引起有条件的回避,并且只有STN刺激中断正在进行的糖自助给药。电生理记录确定了苍白神经元中突触后反应,以及腹侧pallidum中STN末端的选择性光静静态,复制了STN诱导的厌恶。将STN识别为厌恶学习的来源,为情感影响贡献了神经生物学的基础。
摘要假设丘脑下核(STN)在反应停止信号的快速停止运动中起着核心作用。单单元记录这种作用的证据很少,但仍然不确定该作用与STN解剖学细分所描述的不同功能如何相关。在这里,我们使用非人类灵长类动物解决了知识的差距,以及区分反应性和主动作用抑制,开关和骨骼运动函数的任务。我们发现,STN神经元的特定子集具有与反应性动作停止或切换中因果关系一致的活性。重要的是,这些神经元严格隔离到STN的腹侧区域。在其他细分中编码任务维度(例如运动本身和主动控制)中的神经元。我们建议,STN参与反应性控制仅限于其腹侧部分,进一步暗示了脉冲控制障碍中的这一STN细分。
图 2. 针对健康对照 (HC) 训练的 EBM 模型的全局解释。(A) 按前 15 个最具预测性的特征的平均绝对得分降序排列的特征重要性。(B) 左、右丘脑及其核的解剖示意图。橙色表示全局解释中发现的 15 个最重要的核。
摘要:丘脑下核(STN)的深脑刺激(DB)是减轻帕金森氏病(PD)运动症状的手术程序。DBS的模式(例如,所使用的电极对和刺激强度)通常通过基于运动功能的主观评估来优化试验和误差。我们测试了DBS在选定的基底神经节核中释放谷氨酸的假设,并创建了6-羟基羟基胺(6-OHDA)诱导的nigrostriatal病变会在这些基础神经节核中的DBS释放中改变谷氨酸。我们研究了在麻醉,对照和6-OHDA治疗的大鼠中,STN本身或Globus Pallidus(GP)中DBS的伪随机二进制序列与谷氨酸(GP)之间的关系。我们使用使用系统识别估算的转移函数表征了DBS和谷氨酸水平之间的刺激 - 反应关系。刺激GP和STN中STN升高的谷氨酸水平。 尽管6-OHDA处理不会影响DBS在STN期间STN中的谷氨酸动力学,但由于存在或不存在6-OHHDA诱导的病变,DBS在STN中的DBS和GP中DBS之间的DBS之间的转移功能显着改变。 因此,在6-OHDA处理的动物中GP中的谷氨酸反应(但不在STN中)取决于多巴胺能输入。 因此,在DBS患者中,测量GP中的谷氨酸水平可能会在闭环DBS设备中提供有用的反馈目标,因为DBS期间GP中谷氨酸释放的动力学似乎反映了SNC中多巴胺能神经元的丧失。刺激GP和STN中STN升高的谷氨酸水平。尽管6-OHDA处理不会影响DBS在STN期间STN中的谷氨酸动力学,但由于存在或不存在6-OHHDA诱导的病变,DBS在STN中的DBS和GP中DBS之间的DBS之间的转移功能显着改变。因此,在6-OHDA处理的动物中GP中的谷氨酸反应(但不在STN中)取决于多巴胺能输入。因此,在DBS患者中,测量GP中的谷氨酸水平可能会在闭环DBS设备中提供有用的反馈目标,因为DBS期间GP中谷氨酸释放的动力学似乎反映了SNC中多巴胺能神经元的丧失。