同时,它将卷积神经网络与传统方法相结合,以基于短时傅立叶变换和连续小波变形的特征提取方法提出特征提取方法。卷积神经网络分类算法使用特征提取算法来提取时间频率特征来制作时间频率图,并使用卷积网络来快速学习分类的功能。测试结果表明,该算法在运动图像脑电图公共数据集中的精度为96%,而自制数据集的精度率约为92%,这证明了算法在运动成像EEG分类中的可行性。
这项工作得到了内蒙古自治区的自然科学基金会项目(编号2019MS08024)抽象非小细胞肺癌(NSCLC是最常见的组织学肺癌类型,在诊断时约有66%的患者中与远处转移有关。大脑是转移的常见部位,在初始诊断时,大约13%的患者在颅内受累。这严重影响了生活质量,并导致预后不良。驱动基因阳性NSCLC脑转移患者的靶向治疗可实现更好的颅内控制率;但是,使用驱动基因阴性NSCLC脑转移的患者的治疗选择有限。近年来,随着免疫疗法的扩展,免疫检查点抑制剂(ICI)已被广泛用于临床实践。ICI与放射疗法结合的治疗方式在治疗驱动基因阴性NSCLC脑转移的患者方面有望。本文回顾了敏感驱动器基因阴性NSCLC脑转移患者的放射治疗与免疫疗法的临床研究进度,目的是为可用的临床治疗方案提供参考。
我们提出了虚拟社区,一个旨在支持具身人工智能研究的社交世界模拟平台,具有源自现实世界的大规模社区场景。虚拟社区引入了两个关键特性,以生成人工智能来丰富虚拟社交世界:可扩展的 3D 场景创建,支持在任何位置和规模生成广阔的室内外环境,解决了具身人工智能研究缺乏大规模、交互式的开放世界场景的问题;具有扎实角色和社会关系网络的具身代理,这是第一个在社区层面模拟具有社交联系的代理,同时也具有基于场景的角色。我们设计了两个新颖的挑战来展示虚拟社区提供了试验平台来评估具身代理在开放世界场景中的社交推理和规划能力:路线规划和竞选活动。路线规划任务考察代理推理社区中的时间、位置和工具的能力,以便规划日常生活中快速、经济的通勤。竞选活动任务评估了代理作为社区新成员探索和与其他代理建立联系的能力。 。 我们对几个基线代理进行了这些挑战的评估,并展示了当前方法在解决开放世界场景中体现的社会挑战方面的性能差距,我们的模拟器旨在解决这些挑战。 我们计划开源这个模拟,并希望虚拟社区能够加速这个方向的发展。 我们鼓励读者在 https://sites.google.com/view/virtual-community-iclr 上查看我们的模拟演示。
本研究对客机机舱模型中飞机加速引起的体积力对气流和污染物扩散的影响进行了数值模拟。六氟化硫 (SF 6 ) 被用作机舱内污染物,并代替粒径为 1.6 至 3.0 mm 的咳嗽颗粒。研究发现,这些体积力对污染物扩散现象和浓度有显著影响,尤其是在爬升阶段,在大部分模拟时间内,两个监测位置的时间积分浓度是稳定水平(巡航)飞行情况下的时间积分浓度的 2.4 到 2.8 倍。然而,在下降阶段,污染物的暴露量并没有明显变化。另一方面,空气速度在爬升和下降阶段明显增加,导致气流模式、气流循环幅度以及某些位置的气流循环方向发生明显变化。当前研究存在局限性,需要进行详细计算并考虑参数变化。研究结果值得进一步研究飞机加速产生的体力对各种客机客舱内气流和污染物扩散的影响。
具身智能 (EI) 是一个快速发展的领域,旨在解决有关机器智能本质的新想法。EI 模糊了人工智能和物理智能(分别为 AI 和 PI)之间的界限;它在系统的人工和自然组件之间创建了一个分散的界面。EI 旨在将自然生物中观察到的多模态和多尺度适应性融入机器中,从而为机器人技术提供一种全新的方法,让未来充满自主、有用和安全的机器。想象一个每台机器在形态和神经学上都是独一无二的世界。这样的技术将不受无意的意外(新环境)或有意的意外(对抗性攻击)的影响,因为没有两台机器会共享一个共同的致命弱点。想象一下,当机器一分为二时,会形成两个较小但不同的原始机器版本。想象一下,机器可以分解成独立组件群,并根据需要重新组合成一个物理整体。想象一下,在自主机器中,控制、驱动、感觉、通信、计算和动力之间没有明显的区别,这使得这些机器不受任何一个子系统完全失效的影响。这些机器可能还会包含生物和非生物组件,进一步结合生物和非生物世界的优点,模糊“我们”(人类)和“他们”(机器)之间的区别。
本文的主要目的是全面概述和分析物质制品与具身心智之间的各种关系。本文的第二个目标是确定制品设计和使用中的一些趋势。首先,根据其功能特性,我确定了具身心智所采用的四类制品,即 (a) 具身制品、(b) 感知制品、(c) 认知制品和 (d) 情感制品。这些类别可以重叠,因此一些制品属于多个类别。我还确定了我们在与制品交互时使用的一些技术(或技能)。确定这些制品和技术类别使我们能够绘制出具身心智与制品世界之间关系的图景。其次,在确定了人工制品和技术的类别之后,本文概述了人工制品设计和使用的一些趋势,重点关注神经假体、脑机接口和个性化算法,引导用户走向特定的信息消费认知路径。
在脑类器官中[58]。 (f)TPP制造光子晶体微纳米传感单元[59]。 (g)成像在脑类器官中[58]。(f)TPP制造光子晶体微纳米传感单元[59]。(g)成像
类脑计算是借鉴脑科学基本原理,打破 “ 冯诺依曼 ” 架构束缚的新型计算技术。本研究组将从理论和器件两个方向对类脑计算展开协同 研究。 理论方面:研究类脑计算架构、模型和算法,探索基于类脑计算的类脑智能的基础理论;借鉴神经元模型、神经环路传导、神经编码 及认知、学习、记忆、决策等神经机制,逐步建立和完善类脑处理信息处理的数学 / 计算原理和模型;构建类脑计算和智能的统一理论 框架。为类脑计算器件及系统的发展提供理论基础。 器件方面:基于新材料和新技术,研究新型高性能类脑神经器件,解决一致性差、可靠性差、规模化难等痛点;研究基于类脑神经器 件的网络架构,构建大规模阵列,开展外围电路的研发与设计;研究基于新型类脑器件的感知和计算架构,发展感存、存算、感存算 一体系统。
然而,表达和实施这些思考是困难的,特别是在机器人和人工智能 (AI) 等新的复杂领域。为了这个目的,本书收集了体现人工智能的多样性、公平性和包容性 (DEI4EAI) 项目的思考、见解和工具。本书面向从事体现人工智能工作并有兴趣为更公平和公正的未来做出贡献的学生、研究人员、设计师、开发人员和社会利益相关者。所有那些被称为普通的东西实际上都是文化性的:它们代表着价值观、信仰和叙述,影响我们如何收集和使用数据、如何设计算法、如何定义代理、如何塑造人工智能体现、如何设计交互以及我们如何定义体现人工智能干预。尽管角色和能力不同,设计师、研究人员和更广泛的利益相关者(如政策制定者和社区)都有责任反思他们的价值观、观点、偏见和刻板印象如何影响具体化的人工智能技术。这很重要,因为孤立的实践会影响我们评估行为风险和危害的能力。为了防止设计有害和不充分的技术,需要以反思和开放的态度审视叙述、实践和方法,以转变思维方式。
