摘要 研究人员越来越多地探索为健全用户部署脑机接口 (BCI),其动机是比现有的身体介导交互更直接地访问心理状态。这种动机似乎与长期以来 HCI 对具身化的强调相矛盾,即普遍认为身体对认知至关重要。本文通过回顾具身认知和交互的见解来解决这一明显的矛盾。我们首先批判性地审视最近对 BCI 的兴趣,并确定大脑认知与更广泛的身体整合的程度是研究的核心关注点。然后,我们定义了综合认知观点对界面设计和评估的影响。我们得出的一个违反直觉的结论是,具身化本身不应该意味着比 BCI 更倾向于身体介导的交互。相反,它可以通过以下方式指导研究:1) 为 BCI 性能提供基于身体的解释,2) 提出在认知模块化观点中被忽视的评估考虑因素,以及 3) 通过将其设计见解直接转移到 BCI。最后,我们反思了 HCI 对具身化的理解,并确定了迄今为止被忽视的具身化的神经维度。
根据联邦航空管理局的研究,仅美国航空公司每年就燃烧 162 亿加仑的航空燃料,导致美国空气污染的 3% 以上,航空业贡献了全球空气污染的 1% 以上。与其他污染源相比,这些数字可能看起来微不足道,但航空业仅占世界贸易量的 0.5%,而全球能源消耗量为 2.2%。目前电池和电动机的进步并不能在不久的将来取代燃气涡轮发动机,特别是对于远程飞机而言。本文介绍了一种 BWB 飞机的概念设计,该飞机可载客 160 人,航程 9200 公里,巡航速度为 0.77 马赫数,可通过 FAR 25 认证。设计非常规配置的方法包括传统的飞机设计方法和新颖的方法。在任何航程方程中,升阻比都起着重要作用。对于 BWB 飞机来说,这个比率相当高,而且随着发动机效率的提高,每位乘客每公里的燃油消耗量可以大幅降低。与具有类似载客量和任务特征的传统飞机相比,BWB 飞机的一体式设计提供了较低的空重。
摘要 — 从“互联网人工智能”时代到“具身人工智能”时代,出现了一种新兴的范式转变,人工智能算法和代理不再从主要来自互联网的图像、视频或文本数据集中学习。相反,他们通过与环境的互动从类似于人类的自我中心感知中进行学习。因此,对具身人工智能模拟器的需求大幅增长,以支持各种具身人工智能研究任务。对具身人工智能日益增长的兴趣有利于对通用人工智能 (AGI) 的更大追求,但目前还没有对这一领域的当代和全面的调查。本文旨在为具身人工智能领域提供百科全书式的调查,从其模拟器到其研究。通过评估我们提出的七个特征的九个当前具象人工智能模拟器,本文旨在了解模拟器在具象人工智能研究中的用途及其局限性。最后,本文调查了具象人工智能的三个主要研究任务——视觉探索、视觉导航和具象问答 (QA),涵盖了最先进的方法、评估指标和数据集。最后,通过调查该领域发现的新见解,本文将为任务模拟器的选择提供建议,并为该领域的未来方向提供建议。
情境化具身智能体如何利用知识实现目标是自然和人工智能的经典问题。生物体如何利用其神经系统实现这一目标是具身认知神经理论面临的核心挑战。为了构建这一挑战,我们借用了塞尔对意向性的分析中的术语,即其两个契合方向和六种心理模式(感知、记忆、信念、行动中的意图、先前意图、愿望)。我们假设意向状态由神经激活模式实例化,而神经激活模式由神经交互稳定。动态不稳定性为启动和终止意向状态提供了神经机制,对于组织意向状态序列至关重要。概念节点网络所表示的信念是自主学习的,并根据期望的结果被激活。意向智能体的神经动力学原理在一个玩具场景中得到演示,其中机器人智能体探索环境并根据学习到的颜色变换规则将物体涂成所需的颜色。
w w w .m i s a w a .a f .m i l 第 35 战斗机联队 (DSN) 电话:315-226-3075 传真:315-226-9342 公共事务办公室 (COM) 电话:0176-53-5181,分机。226-3075 日本三泽空军基地 96319-5009 (COM) 传真:0176-53-5181,分机。226-9342
因此,跨个体、跨场景的脑电分析方法逐渐成为研究热点。越来越多的研究人员将广泛应用脑 电信号分析的特征于跨个体、跨场景的脑电信号分析研究中。 Touryan 等人采用经典的独立成分分 析的特征分析方法描述特征空间,计算功率谱密度( Power Spectral Density , PSD ),并采用顺序 前向浮动选择方法识别频谱特征中的独立成分集,结果表明该方法可以识别出跨场景脑电信号中的 共同成分 [88] 。 Kakkos 等人采用了特征融合的方法,将 PSD 与功能连接特征相结合,提高了跨场景 分类的性能,并证明了脑特征融合在跨场景中的应用更为有效 [89] 。 Xing 等人将模糊熵特征用于跨 场景脑电信号分析,发现模糊熵特征相对于其他特征更能适合跨场景 [90] 。卷积神经网络 ( Convolutional Neural Networks , CNN )和递归神经网络( Recurrent Neural Networks , RNN )等基 于深度学习的新型跨任务模型在跨场景脑电分析中展现了巨大潜力。这些模型能够自动提取特征和 学习复杂的脑电特征,从而有效地缩小不同任务和场景之间的差距,提高模型的泛化能力 [91][92][93] 。 近年来,一些跨学科的方法被创新性地应用于跨场景研究, Zhao 等人提出了一种跨学科的对齐多 源域自适应方法,用于跨个体的 EEG 疲劳状态评估,显著提高了模型的泛化能力 [94] , Zhou 等人在 此基础上进行改进,提出了一种跨任务域自适应方法,有效提升了跨场景认知诊断的性能 [95] 。
图S10。 建立用于研究缺血性中风的永久性脑动脉闭塞(PMCAO)模型。 PMCAO手术程序。 CCA,ICA和ECA暴露了,将硅细丝插入CCA和ICA直到到达MCA(有关详细信息的材料和方法)。 用biorender.com创建的数字。 b TTC染色大脑的代表性照片。 白色区域代表PMCAO的梗塞区域。 PMCAO后1、3和6小时,缺血性大脑中SIRT1的mRNA表达水平。 数据表示为折叠变化,相对于假手术组在归一化为GAPDH之后。 误差条表示平均值±S.D. (n = 3)(每组n = 10只小鼠, * p <0.05,*** p <0.001对假手术)。 缩写:CCA,常见的颈动脉; ICA,颈内动脉; ECA,外部颈动脉; MCA,中大脑中动脉; TTC,2,3,5-三苯基四唑氯化物。图S10。建立用于研究缺血性中风的永久性脑动脉闭塞(PMCAO)模型。PMCAO手术程序。CCA,ICA和ECA暴露了,将硅细丝插入CCA和ICA直到到达MCA(有关详细信息的材料和方法)。用biorender.com创建的数字。b TTC染色大脑的代表性照片。白色区域代表PMCAO的梗塞区域。PMCAO后1、3和6小时,缺血性大脑中SIRT1的mRNA表达水平。数据表示为折叠变化,相对于假手术组在归一化为GAPDH之后。误差条表示平均值±S.D.(n = 3)(每组n = 10只小鼠, * p <0.05,*** p <0.001对假手术)。缩写:CCA,常见的颈动脉; ICA,颈内动脉; ECA,外部颈动脉; MCA,中大脑中动脉; TTC,2,3,5-三苯基四唑氯化物。
基于运动想象的脑机接口 (MI-BCI) 已被提议作为一种中风康复手段,它与虚拟现实相结合,可以将基于游戏的互动引入康复中。然而,MI-BCI 的控制可能难以获得,用户可能会面临糟糕的表现,这会让他们感到沮丧,并可能影响他们使用该技术的积极性。通过增加用户对系统的代理感,可以减少积极性的下降。本研究的目的是了解虚拟现实中描绘的手的化身(所有权)是否可以增强代理感,从而减少 MI-BCI 任务中的挫败感。22 名健康参与者参加了一项受试者内研究,在两种不同的化身体验中比较了他们的代理感:1) 化身手(与身体),或 2) 抽象块。两种表征都以相似的运动闭合以实现空间一致性,并因此弹出气球。手/块通过在线 MI-BCI 控制。每种情况都包括 30 次 MI 激活化身手/块的试验。在每种情况之后,一份问卷调查了参与者的自主感、所有权和挫败感。之后,进行了一次半结构化访谈,参与者详细说明了他们的评分。这两种情况都支持相似水平的 MI-BCI 性能。观察到所有权和自主性之间的显著相关性(r = 0.47,p = 0.001)。正如预期的那样,虚拟手比积木产生更高的所有权。在控制性能时,所有权增加了自主感。总之,基于 BCI 的康复应用程序的设计者可以利用拟人化虚拟形象来对训练过的肢体进行视觉映射,以提高所有权。虽然不能减少挫败感,但只要 BCI 性能足够好,所有权就可以提高感知到的自主性。在未来的研究中,应该在中风患者中验证这些结果,因为他们对自主性和所有权的感知可能与健全用户不同。
全脑脑是复杂的大脑畸形,这是由于早期胎儿发育过程中大脑不完全的裂解而导致的。这种情况的特征在于普罗德龙(胚胎的前脑)的失败,以正确分成大脑半球的双叶,导致影响大脑和面部特征的异常。根据大脑分裂的严重程度,全脑脑分为四种类型:Alobar Holoporsencephaly:最严重的形式,其中没有脑半球分离,导致单个脑室心室和一个单裂脑。半月骨全脑脑:大脑半球部分分离,大脑的结构在某种程度上介于Alobar和Lobar之间。Lobar Holoporsencephaly:最少的严重形式,具有更好的脑半球分离和更正常的大脑结构。中半球间变体(syntelcephaly):半球在大脑中间没有分离,但可能在前和后方面更正常地分裂。是什么导致全脑脑?
为什么要研究这个问题?从线虫到鱼类、啮齿动物和灵长类动物,进化一直都在实现我们尚未实现的目标,即能够灵活而稳健地与物理世界互动以确保其生存的具身代理。这种感觉运动回路是跨物种共享的智能的基础,我们更抽象的推理能力(包括语言)也依赖于此。然而,设计这种能力一直是人工智能(AI)面临的一项重大计算挑战,尤其是考虑到制造通用机器人一直是一个长期目标(但尚未实现)。尽管算法和数据集规模的进步使有效的表征学习成为可能[18],但当前的人工智能仍难以理解
