摘要 — 从“互联网人工智能”时代到“具身人工智能”时代,出现了一种新兴的范式转变,人工智能算法和代理不再从主要来自互联网的图像、视频或文本数据集中学习。相反,他们通过与环境的互动从类似于人类的自我中心感知中进行学习。因此,对具身人工智能模拟器的需求大幅增长,以支持各种具身人工智能研究任务。对具身人工智能日益增长的兴趣有利于对通用人工智能 (AGI) 的更大追求,但目前还没有对这一领域的当代和全面的调查。本文旨在为具身人工智能领域提供百科全书式的调查,从其模拟器到其研究。通过评估我们提出的七个特征的九个当前具象人工智能模拟器,本文旨在了解模拟器在具象人工智能研究中的用途及其局限性。最后,本文调查了具象人工智能的三个主要研究任务——视觉探索、视觉导航和具象问答 (QA),涵盖了最先进的方法、评估指标和数据集。最后,通过调查该领域发现的新见解,本文将为任务模拟器的选择提供建议,并为该领域的未来方向提供建议。
主要关键词