陆生植物的陆地定植涉及对环境压力(如脱水)的适应。虽然陆生植物进化过程中气孔和脱落酸 (ABA) 途径的创新已被充分研究,但尚不清楚绿藻和种子植物如何利用不依赖 ABA 的应激反应策略。我们发现,拟南芥植物的高渗应激会迅速且短暂地诱导 Thr349 处关键二聚体间界面处的 α-微管蛋白磷酸化。磷酸化的微管蛋白不会被整合到微管聚合物中,从而有效诱导现有微管的解体。负责该过程的植物特异性微管蛋白激酶 Propyzamide Hypersensitive 1 (PHS1) 通常被并置的磷酸酶结构域及其类似于激酶相互作用基序 (KIM) 的 N 端区域提供的磷酸酶活性灭活,但在高渗和盐度应激下会立即激活。磷酸酶失活的 PHS1 突变体具有组成活性,并在植物体内诱导剧烈的微管解聚。AlphaFold 的体外酶测定和蛋白质结构预测表明激酶调节有两种不同的机制:N 端延伸中的 KIM 促进 N 端折叠到激酶结构域上,从而物理阻断底物(微管蛋白)的可及性,而 C 端磷酸酶结构域使激酶催化位点中的关键残基(假定)脱磷酸化。急性和瞬时微管蛋白磷酸化以及随后由渗透胁迫引起的微管解体在拟南芥、苔类植物和衣藻中高度保守,表明其起源于淡水绿藻,早于脱落酸途径的进化。然而,其生理意义在很大程度上尚不清楚,可能是由于其高度瞬时性。
Shen 等人 2023 . 小麦蔗糖合酶基因 TaSus1 是决定每穗粒数的因素。Shen 和 Feng,2024 . NIN — 固氮根瘤共生的核心。Zhang 等人 2023 . 表观遗传修饰调节小麦品种特异性根系发育和对氮利用的代谢适应。Zhang 等人 2023 . 利用 PacBio 高保真测序发现小麦结构变异。Zhang 等人 2024 . 揭示 GRP7 在脱落酸信号介导的 mRNA 翻译效率调控中的调控作用。Zhao 等人 2024 . 揭示小麦胚乳发育的机理:表观遗传调控和提高产量和品质的新调控因子。
植物使用化学诱导的二聚化(CID)模块(包括受体pyr1和HAB1)感知脱落酸(ABA),这是由配体激活的pyr1抑制的磷酸酶。此系统是唯一的,因为可以重新编程配体识别的相对容易。为了扩展Pyr1系统,我们设计了一个正交的“*”模块,该模块携带了二聚体界面盐桥; X射线晶体学,生化和体内分析证实了其正交性。我们使用此模块创建了Pyr1* mandi /hab1*和pyr1* azin /hab1*,它们对其激活的配体曼陀果实和偶氮甲基具有纳摩尔敏感性。在拟南芥和酿酒酵母中进行的实验证明了使用活物生物传感器和构建多输入/输出遗传电路的抗抑郁剂污染物的敏感检测。我们的新模块启用了用于植物和真核合成生物学的可编码的多渠道CID系统,可以增强新的基于植物和微生物的感应方式。
-glomalin,EPS和生物膜改善了土壤聚集的稳定性并增加了根际中的水分,在干旱1,2下增加了植物生存和生物量,以及在盐胁迫下发芽3。- 细菌生物膜减少了植物组织中砷的摄取和砷的积累,并改善了植物生长4。植物激素的分泌-Rhizobial Gearins促进了Rubisco和低分子量的渗透量产生,增加了干旱耐受性5,并促进了不定的根生长以抵消洪水6。- 细菌细胞分裂素增加了相对的水含量,叶水的潜力以及干旱下的根渗出液的产生。- 末期真菌gberellins调节植物激素,导致盐和干旱胁迫下的营养同化较高。8。- 细菌脱落酸增强了脯氨酸水平以及光合作用和光保护色素,减少了在干旱下损失的植物水9。- 细菌中的ACC-脱氨基酶基因增加了根部伸长和病原体耐药性10。
摘要:植物激素又称植物生长调节剂,可调节植物的各种生理过程,包括发芽、生长以及对生物和非生物胁迫的反应。由真菌、细菌和病毒等病原体引起的植物疾病通常会改变激素途径,导致植物中同时诱导拮抗激素和协同激素。然而,在抗性品种中,激素反应遵循更连续的模式。植物激素信号通路主要沿着两个拮抗轴极化:一侧是水杨酸 (SA) 和茉莉酸 (JA) 途径,另一侧是乙烯途径。除了 SA、JA 和乙烯之外,其他生长调节剂,如生长素、油菜素类固醇、细胞分裂素和脱落酸 (ABA),也在植物对生物胁迫的反应中发挥重要作用,并且因其在植物-病原体相互作用中的重要性而越来越受到重视。病原体可以调节激素的生物合成和信号传导,从而抑制植物的防御能力并改变细胞环境,促进其感染和增殖。在本文中,我们将回顾对植物激素的功能和调节、植物防御反应的调节以及植物激素与防御途径之间的协同作用和串扰的最新进展。
山药 ( Dioscorea spp.) 是一种多品种、多用途块茎作物。为了阐明块茎发育机制,我们对山药块茎进行了时程表型、细胞学、生理、代谢组学和转录组学分析。结果表明,随着淀粉的积累,块茎重量增加,且在块茎发育过程中蔗糖代谢也很活跃,同时脱落酸 (ABA) 水平与块茎重量呈正相关,赤霉素 (GA) 则呈负相关。代谢组学分析表明,在块茎发育过程中积累了400种代谢物,这些代谢物在调控块茎生长发育、风味和药用成分方面发挥着重要作用。通过比较转录组分析,共将743个差异表达基因 (DEG) 分配到淀粉和蔗糖代谢、植物激素信号转导途径和类黄酮途径等21个KEGG通路。综合转录组和代谢组分析揭示了植物激素信号转导途径、淀粉和蔗糖代谢途径、黄酮类化合物合成途径的DEG和差异积累代谢物(DAM)。综上所述,参与植物激素信号转导途径、淀粉和蔗糖代谢途径、黄酮类化合物代谢途径的DAM和DEG在块茎发育调控中起着重要作用。本研究为山药分子育种和品质改良提供了理论依据和实践指导。
摘要:丙酮酸激酶(PK)是糖酵解三大限速酶之一,在能量代谢中起着至关重要的作用。本研究从水稻基因组中鉴定了10个PK基因。最初,这些基因被分为两类:细胞质丙酮酸激酶(PKc)和质体丙酮酸激酶(PKp)。随后,表达分析发现OsPK1,OsPK3,OsPK4,OsPK6和OsPK9在籽粒中高表达,并且PK可以形成杂聚物。此外,研究还发现脱落酸(ABA)显著调控水稻中PK基因(OsPK1,OsPK4,OsPK9和OsPK10)的表达。有趣的是,所有这些基因都参与了水稻籽粒品质和产量的调控。例如,破坏 OsPK3 、OsPK5 、OsPK7 、OsPK8 和 OsPK10 以及破坏 OsPK4 、OsPK5 、OsPK6 和 OsPK10 分别降低了千粒重和结实率。此外,通过 CRISPR/Cas9 系统破坏 OsPK4 、OsPK6 、OsPK8 和 OsPK10 后,与野生型相比,总淀粉含量增加,蛋白质含量降低。同样,操作 OsPK4 、OsPK8 和 OsPK10 基因会增加直链淀粉含量。同时,除 ospk6 外,所有 CRISPR 突变体和 RNAi 系的谷粒与野生型相比,垩白率均显著增加。总体而言,这项研究描述了PK基因家族所有基因的功能,并展示了它们在改善水稻产量和品质性状方面的尚未开发的潜力。
摘要:在大米中,半弱SM是最需要的特征之一,因为它促进了更好的产量和耐药性。Here, semi-dwarf rice lines lacking any residual transgene-DNA and o ff -target e ff ects were generated through CRISPR / Cas9-guided mutagenesis of the OsGA20ox2 gene in a high yielding Basmati rice line, and the isobaric tags for relative and absolute quantification (iTRAQ) strategy was utilized to elucidate the proteomic changes in mutants.结果表明吉布林林(GA 1和GA 4)水平降低,植物高度(28.72%)和叶叶长度,而所有其他特征保持不变。OSGA20OX2表达得到了高度抑制,突变体表现出降低的细胞长度,宽度,并通过外源性GA 3处理恢复其植物高度。野生型和纯合突变系(GXU43_9)的比较蛋白质组学分别显示了588种蛋白质的水平,分别是273个上调和315个下调的水平。鉴定出的差异表达的蛋白质(DEP)主要富含碳代谢和固定,糖酵解 /糖糖异生,光合作用和氧化磷酸化途径。与生长调节因素(GRF2,GRF7,GRF9,GRF9,GRF11和GRF11)和GA(Q8RZ73,Q8RZ73,Q9AS97,Q69197,Q69VG1,Q69VG1,Q8LNJ6,Q8LNJ6,q8lnj6,q8lnj6,qy8lnj6,qy8lnj6,q55,在突变系中,脱离应激抗应激的蛋白5(ASR5)和脱落酸受体(PYL5)上调。我们将CRISPR / CAS9与蛋白质组学筛选整合为快速评估CRISPR实验结果的最可靠策略。
为了保留其品种属性,已建立的葡萄品种(Vitis vinifera L. ssp. vinifera)必须进行克隆繁殖,因为它们的基因组是高度杂合的。马尔贝克是一种源自法国的品种,因生产高品质的葡萄酒而受到赞赏,是品种 Prunelard 和 Magdeleine Noire des Charentes 的后代。在这里,我们将 PacBio 长读段三重合并到从父母遗传的两个单倍体补体中,构建了马尔贝克的二倍体基因组组装。经过单倍型感知的重复数据删除和校正后,获得了两个单倍相的完整组装,且单倍型转换错误率非常低(< 0.025)。单倍相比对确定了 > 25% 的多态性区域。基因注释(包括 RNA-seq 转录组组装和从头算预测证据)导致两个单倍相的基因模型数量相似。利用注释的二倍体组装体对四个表现出浆果组成特征差异的马尔贝克克隆种质进行转录组比较。使用任一单倍体作为参考对成熟果皮转录组进行分析,得到了相似的结果,尽管观察到了一些差异。特别是,在仅以 Magdeleine 遗传单倍型为参考鉴定的差异表达基因中,我们观察到假设的半合子基因的过度表达。克隆种质 595 的浆果花青素含量较高,与脱落酸反应增加有关,可能导致观察到的苯丙烷代谢基因的过度表达和与非生物应激反应相关的基因的失调。总体而言,结果强调了生产二倍体组装体的重要性,以充分代表高度杂合的木本作物品种的基因组多样性并揭示克隆表型变异的分子基础。
为了保留其品种属性,已建立的葡萄品种(Vitis vinifera L. ssp. vinifera)必须进行克隆繁殖,因为它们的基因组是高度杂合的。马尔贝克是一种源自法国的品种,因生产高品质的葡萄酒而受到赞赏,是品种 Prunelard 和 Magdeleine Noire des Charentes 的后代。在这里,我们将 PacBio 长读段三重合并到从父母遗传的两个单倍体补体中,构建了马尔贝克的二倍体基因组组装。经过单倍型感知的重复数据删除和校正后,获得了两个单倍相的完整组装,且单倍型转换错误率非常低(< 0.025)。单倍相比对确定了 > 25% 的多态性区域。基因注释(包括 RNA-seq 转录组组装和从头算预测证据)导致两个单倍相的基因模型数量相似。利用注释的二倍体组装体对四个表现出浆果组成特征差异的马尔贝克克隆种质进行转录组比较。使用任一单倍体作为参考对成熟果皮转录组进行分析,得到了相似的结果,尽管观察到了一些差异。特别是,在仅以 Magdeleine 遗传单倍型为参考鉴定的差异表达基因中,我们观察到假设的半合子基因的过度表达。克隆种质 595 的浆果花青素含量较高,与脱落酸反应增加有关,可能导致观察到的苯丙烷代谢基因的过度表达和与非生物应激反应相关的基因的失调。总体而言,结果强调了生产二倍体组装体的重要性,以充分代表高度杂合的木本作物品种的基因组多样性并揭示克隆表型变异的分子基础。